• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

EVALUATING PARAMETERS OF CONDUCTIVITY PROFILE OF THE LOWER IONOSPHERE BY TWEEK-ATMOSPHERICS

Shvets, AV, Krivonos, AP, Goryshnya, YV
Serdiuk, TN
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: alexander_shvets@ukr.net

*Dnipropetrovsk National University of Railway Transport named after Academician V.  Lazaryan
2, Lazaryana, Dnepropetrovsk, 49010, Ukraine
E-mail: serducheck-t@rambler.ru

https://doi.org/10.15407/rej2015.01.040
Language: Russian
Abstract: 

A method of determining the effective heights of the Earth-ionosphere waveguide for basic and higher types of normal waves (modes) and the distance to the radiation source – lightning is investigated by analyzing pulse signals in the range of extremely-low (ELF) and very low frequency (VLF) – tweek-atmospherics (tweeks). The resulted from analysis of multimode tweeks dependence of the effective height of the waveguide on the frequency is used for determining the parameters of the lower ionosphere conductivity profile. In computer simulations, waveforms of tweeks were synthesized in the frame of the Earth-ionosphere waveguide model with an exponential conductivity profile of the lower ionosphere. For the separation and analysis of individual waveguide modes in the signal the dynamic spectra of tweeks are used. The error in determining the effective height of the waveguide for different waveguide modes was 0.2…0.4 km, allowing estimating the parameters of the exponential conductivity profile of the lower ionosphere in the range of values typical for night conditions. Systematic and random error in determining the distance to the lightning were 10…40 km and  20…80 km, respectively, in the range of distances of 500…3000 km.

Keywords: ELF-VLF radio waves, lower ionosphere, tweek-atmospherics Earth-ionosphere waveguide

Manuscript submitted 04.12.2014
PACS 94.20.ws
Radiofiz. elektron. 2015, 20(1): 40-47
Full text (PDF)

References: 
  1. Hughes, H. G., Gallenberger, R. J., Pappert, R. A., 1974. Evaluation of nighttime exponential ionospheric models using VLF atmospherics. Radio Sci. 9(12), pp. 1109–1116.DOI: https://doi.org/10.1029/RS009i012p01109
  2. Cummer, S. A., Inan, U. S., Bell, T. F., 1998. Ionospheric D-region remote sensing using VLF radio atmospherics. Radio Sci. 33(6), pp. 1781–1792.DOI: https://doi.org/10.1029/98RS02381
  3. Han, F., Cummer, S. A., Li, J., Lu, G., 2011. Daytime ionospheric D region sharpness derived from VLF radio atmospherics. J. Geophys. Res. 116(A5), pp. A05314 (11 p.).
  4. Cheng, Z., Cummer, S. A., 2005. Broadband VLF measurements of lightning-induced ionospheric perturbations  Geophys. Res. Lett. 32, pp. L08804 (4 p.)
  5. Cheng, Z., Cummer, S. A., Su, H.-T., Hsu, R.-R., 2007. Broadband very low frequency measurement of D region ionospheric perturbations caused by lightning electromagnetic pulses. Geophys. Res. 112(A6), pp. A06318 (8 p.).
  6. Shao, X.-M., Lay, E. H., Jacobson, A. R., 2013. Reduction of electron density in the night-time lower ionosphere in response to a thunderstorm. Nat. Geosci. 6, pp. 29–33.
  7. Mikhailova, G. A., Kapustina, O. V., 1988. Fine time-frequency structure of atmospherics of “tweek” type and VLF diagnostics of parameters of the lower ionosphere at night. Geomagnetizm i Aeronomiya. 28(6), pp. 1015–1018 (in Russian).
  8. Yedemsky, D. Ye., Ryabov, B. S., Shchokotov, A. Yu., Yarotsky, V. S., 1992. Experimental investigation of the tweek field structure. Adv. Space Res. 12(6), pp. 251–254.DOI: https://doi.org/10.1016/0273-1177(92)90066-7
  9. Shvets, A. V., Hayakawa, M., 1998. Polarization effects for tweek propagation. J. Atmos. Sol.-Terr. Phys. 60(4), pp. 461–469.DOI: https://doi.org/10.1016/S1364-6826(97)00131-4
  10. Kumar, S., Deo, A., Ramachandran, V., 2009. Nighttime D-region equivalent electron density determined from tweek sferics observed in the South Pacific Region. Earth, Planets and Space. 61(7), pp. 905–911.DOI: https://doi.org/10.1186/BF03353201
  11. Reeve, C. D., Rycroft, M. J., 1978. The eclipsed lower ionosphere as investigated by natural very low frequency radio signals. J. Atmos. Terr. Phys. 34(4), pp. 667–672.DOI: https://doi.org/10.1016/0021-9169(72)90154-7
  12. Burton, E. T., Boardman, E. M., 1933. Audio-frequency atmospherics. Proc. IRE. 21, pp. 1476–1494.
  13. Barkhausen, H., 1930. Whistling tones from the Earth. Proc. IRE. 18, pp. 1155–1159.DOI: https://doi.org/10.1109/JRPROC.1930.222122
  14. Potter, R. K., 1951. Analysis of audio-frequency atmospherics. Proc. IRE. 39(9), pp. 1067–1069.DOI: https://doi.org/10.1109/JRPROC.1951.273750
  15. Lynn, K. J. W., Crouchley, J., 1967. Night-time sferic propagation at frequencies below 10 kHz. Aust. J. Phys. 20, pp. 101–108.DOI: https://doi.org/10.1071/PH670101
  16. Singh, A. K., Singh, R. P., 1996. Propagational Features of Higher Harmonic Tweeks at Low Latitudes. Earth, Moon and Planets. 73(3), pp. 277–290.DOI: https://doi.org/10.1007/BF00115886
  17. Rodger,C. J., Brundell, J. B., Dowden, R. L., 2005. Location accuracy of VLF World Wide Lightning Location (WWLL) network: Post-algorithm upgrade. Ann. Geophys. 23(2), pp. 277–290.DOI:https://doi.org/10.5194/angeo-23-277-2005
  18. Outsu, J., 1960. Numerical study of tweeks based on wave-guide mode theory. Proc. Res. Inst. Atmos. Nagoya Univ. 7, pp. 58–71.
  19. Ohya, H., Shiokawa, K., Miyoshi, Y., 2008. Development of an automatic procedure to estimate the reflection height of tweek atmospherics. Earth, Planets and Space. 60(8), pp. 837–843.DOI:https://doi.org/10.1186/BF03352835
  20. Rafalsky, V. A., Shvets, A. V., Hayakawa, M., 1995. One-site distance-finding technique for locating lightning discharges. J. Atmos. Terr. Phys. 57(11), pp. 1255–1261.DOI: https://doi.org/10.1016/0021-9169(95)00011-P
  21. Brundell, J. B., Rodger, C. J., Dowden, R. L., 2002. Validation of single station lightning location technique. Radio Sci. 37(4), pp. 1059–1067.DOI: https://doi.org/10.1029/2001RS002477
  22. Shvets, A. V., Gorishnya, Yu. V., 2010. A technique for lightning location and estimation of the lower ionosphere parameters using tweek-atmospherics. Radiofizika I elektronika1(15)2. 63–70.
  23. Wait, J. R., 1962. Electromagnetic Waves in Stratified Media. N. Y.: Pergamon Press Inc.
  24. Wait, J. R., Spies, K. P., 1964. Characteristics of the Earth – ionosphere waveguide for VLF radio waves. NBS Technical Note 300. Washington.
  25. Greifinger, C., Greifinger, P., 1978. Approximate method for determining ELF eigenvalues in the earth-ionosphere waveguide. Radio Sci. 13(5), pp. 831–837.DOI: https://doi.org/10.1029/RS013i005p00831
  26. Porrat, D., Bannister, P. R., Fraser-Smith, A. C., 2001. Modal phenomena in the natural electromagnetic spectrum below 5 kHz. Radio Sci. 36(3), pp. 499–506.DOI: https://doi.org/10.1029/2000RS002506
  27. Shvets, A. V., Gorishnya, Yu. V., 2011. Lightning location and estimation of the lower ionosphere effective height using dispersion properties of tweek-atmospherics. Radiofizika i elektronika. 2(16)(4), pp. 63–70 (in Russian).
  28. Yano, S., Ogawa, T., Hagino, H., 1989. Wave-form analysis of tweek atmospherics. Res. Lett. Atmos. Electr. 9, pp. 31–42.