• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)


Kochin, VN

Institute of Radio Astronomy of the National Academy of Sciences of Ukraine (IRA NASU)
4, Chervonopraporna St., Kharkov, 61002, Ukraine
E-mail: kochin@rian.kharkov.ua

Language: Russian

As a result of microstip antennas compactness and technological effectiveness, they are widely used as independent transmission and receive antennas, and also as elements of phase antenna grids. Thus, there is no strict approach which allows to research microstrip antennas with different geometrical shapes. The new approach to the study of microstrip antennas with patches of different geometry has been suggested in this study. It is based on the application of the Green surface tensors for shielded magnetic-dielectric layer. The expressions for the Green tensor components have been obtained; they are based on electric surface currents.  The examples of the offered approach to solution of the problem of microstrip antenna during approximation of given distribution of surface current and the problem of circular microstrip disk antenna with an axisymmetric excitation have been provided.

Keywords: Green surface tensors, magnetic-dielectric layer, microstrip antenna, surface current

Manuscript submitted 16.12.2014
PACS     84.40.Ba
Radiofiz. elektron. 2015, 20(2): 3-8
Full text  (PDF)

  1. Labadie, N. R., Sharma, S. K. and Rebeiz, G. M., 2014. A Circularly Polarized Multiple Radiating Mode Microstrip Antenna for Satellite Receive Applications. IEEE Trans. Antennas Propag. 62(7), pp. 3490–3500.DOI: https://doi.org/10.1109/TAP.2014.2320860
  2. Pan, Y. M., Zheng, S. Y. and Hu, B. J., 2014. Wideband and Low-Profile Omnidirectional Circularly Polarized Patch Antenna. IEEE Trans. Antennas Propag. 62(8), pp. 4347–4351.DOI: https://doi.org/10.1109/TAP.2014.2323412
  3. Garg, R., Bharttia, P., Bahl, I. and Ittipiboon, A., 2001. Microstrip Antenna Design Handbook. Boston-L.: Artech House, Incorporated.
  4. Carver, K. R. and Mink, J. V., 1981. Microstrip Antenna Technology. IEEE Trans. Antennas Propag. 29(1), pp. 2–24.DOI: https://doi.org/10.1109/TAP.1981.1142523
  5. Chon, K.-H. and Petrov, A. S., 2001. Broadband microstrip antennas. Antenny. 3(49), pp. 18–33 (in Russian).
  6. Prosvirnin, S. L. and Nechayev, Y. B., 1992. Analysis of microstrip antennas within the given surface current distribution approximation. Voronezh: Voronezh State University Publ. (in Russian).
  7. Panchenko, B. A. and Nefedov, E. I., 1986. Microstrip antennas. Moscow: Radio i svyazʼ Publ. (in Russian).
  8. Caloz, C. and Itoh, T., 2005. Electromagnetic Metamaterial: Transmission Line Theory and Microwave Applications. N. Y.: Wiley and IEEE Press.DOI: https://doi.org/10.1002/0471754323
  9. Pozar, D. M., 1982. Input Impedance and Mutual Coupling of Rectangular Microstrip Antennas. IEEE Trans. Antennas Propag. 30(6), pp. 1191–1196.DOI: https://doi.org/10.1109/TAP.1982.1142934
  10. Chew, W. C. and Kong, J. A., 1981. Analysis of a Circular Microstrip Antenna with a Thick Dielectric Substrate. IEEE Trans. Antennas Propag. 29(1), pp. 68–76.DOI: https://doi.org/10.1109/TAP.1981.1142534
  11. Zhuk, N. P. and Tretyakov, O. A., 1981. Bilateral boundary conditions for the mean electromagnetic field in the case of a rough boundary. Izv. vyssh. uchebn. zaved. Radiofiz. 24(12), pp. 1476–1483 (in Russian).
  12. Kochin, V. N., 2004. Two-dimensional tensor Green function for the mean field of two isotropic half-spaces with a random interface. Radiofizika and Radioastronomiya. 9(1), pp. 57–65 (in Russian).
  13. Hönl, H., Maue, A. W. and Westpfahl, K., 1964. Theorie der Beugung., Berlin: Springer Verlag.
  14. Smirnov, V. I., 1974. Course of higher mathematics. Vol. 3. Moscow: Nauka Publ. (in Russian).