• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)


Nickolaenko, AP, Hayakawa, M

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine

Institute of Seismo Electromagnetics,
University of Electro-Communications
Tokyo, Japan

Language: russian

We model an effect of the ionosphere non-uniformity centered above the earthquake at Taiwan on the Schumann resonance records in Japan. The changes in the resonance spectra arise from the interference of the direct radio wave with the one reflected from the ionosphere modification above the earthquake. The disturbance model is used and it was described in the first part of this work. Solution of the Stratton-Chu integral equation is used for describing the wave diffraction and scattering. Observations of the Optical Transient Detector (OTD) satellite are used for modeling the spatial distribution of global thunderstorms. Computations showed that abrupt changes occur in the spectra of all field components resembling the observational results. The features of seismogenic anomalies are discussed.

Keywords: schumann resonance, the conductivity of the atmosphere, the ionosphere non-uniformity


Manuscript submitted 12.11.2014
PACS  93.85.Pq; 93.85.Rt; 94.20.Ws; 94.20.Cf; 94.20.Bb
Radiofiz. elektron. 2015, 20(2): 31-39
Full text  (PDF)



  1. Hayakawa, M., Ohta, K., Nickolaenko, A. P. and Ando, Y., 2005. Anomalous effect in Schumann resonance phenomena observed in Japan associated with the Chi-Chi earthquake in Taiwan. Ann. Geophys. 23(4), pp. 1335–1346.DOI: https://doi.org/10.5194/angeo-23-1335-2005
  2. Hayakawa, M., Sekiguchi, M. and Nickolaenko, A. P., 2005. Diurnal variation of electric activity of global thunderstorms deduced from OTD data. J. Atmos. Electr. 25(2), pp. 55–68.
  3. Hayakawa, M., Nickolaenko, A. P., Sekiguchi, M., Yamashita, K., Ida, Y. and Yano, M., 2008. Anomalous ELF phenomena in the Schumann resonance band as observed at Moshiri (Japan) in possible association with an earthquake in Taiwan. Nat. Hazards Earth Syst. Sci. 8(6), pp. 1309–1316.DOI: https://doi.org/10.5194/nhess-8-1309-2008
  4. Hayakawa, M., Ohta, K., Sorokin, V. M., Yaschenko, A. K., Izutsu, J., Hobara, Y., Nickolaenko, A. P., 2010. Interpretation in terms of gyrotropic waves of Schumann-resonance-like line emissions observed at Nakatsugawa in possible association with nearby Japanese earthquakes. J. Atmos. Sol. Terr. Phys. 72(17), pp. 1292–1298.DOI: https://doi.org/10.1016/j.jastp.2010.09.014
  5. Ohta, K., Umeda, K., Watanabe, N. and Hayakawa, M., 2001. ULF/ELF emissions observed in Japan, possibly associated with the Chi-Chi earthquake in Taiwan. Nat. Hazards Earth Syst. Sci. 1(1), pp. 37–42.DOI: https://doi.org/10.5194/nhess-1-37-2001
  6. Ohta, K., Watanabe, N. and Hayakawa, M., 2006. Survey of anomalous Schumann resonance phenomena observed in Japan, in possible association with earthquakes in Taiwan. Phys. Chem. Earth. Parts A/B/C. 31(4–9), pp. 397–402.DOI: https://doi.org/10.1016/j.pce.2006.02.031
  7. Hayakawa, M., Hobara, Y., Ohta, K., Izutsu, J., Nickolaenko, A. P., Sorokin, V., 2011. Seismogenic effects in the ELF Schumann resonance band. IEEJ Trans. Fundamental Material. 131(9):684–690.DOI: https://doi.org/10.1541/ieejfms.131.684
  8. Nickolaenko, A. P. and Hayakawa, M., 2002. Resonances in the Earth-ionosphere cavity. Dordrecht-Boston-L.: Kluwer Academic Publ.
  9. Mushtak, V. C. and Williams, E. R., 2002. ELF propagation parameters for uniform models of the Earth-ionosphere waveguide. J. Atmos. Sol. Terr. Phys. 64(18), pp. 1989–2001.DOI: https://doi.org/10.1016/S1364-6826(02)00222-5
  10. Williams, E. R., Mushtak, V. C. and Nickolaenko, A. P., 2006. Distinguishing ionospheric models using Schumann resonance spectra. J. Geophys. Res. 111(D16), pp. D16107 (12 p.).
  11. Greifinger, P. S., Mushtak, V. C. and Williams, E. R., 2007. On modeling the lower characteristic ELF altitude from aeronomical data. Radio Sci. 42(2), pp. RS2S12 (12 p.).
  12. Nickolaenko, A. and Hayakawa, M., 2014. Schumann resonance for tyros (Essentials of Global Electromagnetic Resonance in the Earth–Ionosphere Cavity), Tokyo-Heidelberg-N. Y.-Dordrecht-L.: Springer. Ser. XI. Springer Geophys.
  13. Nickolaenko, A. P. and Hayakawa, M., 2015. Disturbances of lower ionosphere above center of earthquake and anomaly in the global electromagnetic resonance signal. Part 1. Models of ionosphere. Telecommunications and Radio Engineering. 74(11), pp. 1025–1038.DOI: https://doi.org/10.1615/TelecomRadEng.v74.i11.60
  14. Nickolaenko, A. P., 1984. On the influence of the localized ionosphere non-uniformity on the ELF radio wave propagation, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 27(10), pp. 1227–1237 (in Russian).
  15. Nickolaenko, A. P., 1994. ELF radio wave propagation in a locally non-uniform Earth-ionosphere cavity. Radio Sci. 29(5), pp. 1187–1199.DOI: https://doi.org/10.1029/94RS01034
  16. Nickolaenko, A. P., Hayakawa, M., Sekiguchi, M., Ando, Y., Ohta, K., 2006. Model modifications in Schumann resonance intensity caused by a localized ionosphere disturbance over the earthquake epicenter. Ann. Geophys. 24(2), pp. 567–575.DOI: https://doi.org/10.5194/angeo-24-567-2006
  17. Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T., Goodman, S. J., Hall, J. M., Koshak, W. J., Mach, D. M. and Stewart, M. F., 2003. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res. 108(D)(1), pp. 4005–4025.
  18. Nickolaenko, A. P., Hayakawa, M. and Sekiguchi, M., 2006. Variations in global thunderstorm activity inferred from the OTD records. Geophys. Res. Lett. 33(6), pp. L06823 (4 p.).
  19. Pechony, O., Price, C. and Nickolaenko, A., 2006. Model variations of Schumann resonance based on OTD maps of the global lightning activity. J. Geophys. Res. 111(A)(11), pp. D23102 (12 p.).
  20. Nickolaenko, A. P. and Hayakawa, M., 2013. Localized ionospheric disturbance over the earthquake epicentre and modifications of Schumann resonance electromagnetic fields. Geomatics, Natural Hazards and Risk. 5(3), pp. 271–283.DOI: https://doi.org/10.1080/19475705.2013.809557
  21. Hayakawa, M. and Molchanov, O. A., 2007. Seismo-electromagnetics as a new field of radiophysics: Electromagnetic phenomena associated with earthquakes. Radio Sci. Bull. 320, pp. 8–17.
  22. Dowden, R. L. and Adams, C. D. D., 1987. Phase and amplitude perturbation on sub-ionospheric signals explained in terms of echoes from lightning-induced electron precipitation ionization patches. J. Geophys. Res. 93(9), pp. 11543-11550.
  23. Rodger, C. J., Dowden, R. L., Rodger, C. J., Brundell, J. B. and Clilverd, M. A., 2001. Decay of whistler-induced electron precipitation and cloud-ionosphere discharge Trimpis: Observations and analysis. Radio. Sci. 36(1), pp. 151–169.DOI: https://doi.org/10.1029/1999RS002297
  24. Rodger, C. J., Cho, M., Clilverd, A. and Rycroft, M. J., 2001. Lower ionospheric modifications by lightning EMP: simulation of the night ionosphere over the United States. Geophys. Res. Lett. 28(1), pp. 199-202. DOI: https://doi.org/10.1029/2000GL011951