• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)


Radionov, VP, Nesterov, PK, Kiseliov, VK

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: radion@ire.kharkov.ua

Language: russian

Terahertz lasers are used as sources of radiation in different heterodyne radio physical devices. Stable frequency difference between the heterodyne and signal channels is required when using these devices. This paper describes the various ways of solving this problem. A scheme of terahertz laser with several resonators is chosen as an optimal solution. The technique of  obtaining and stabilizing the difference frequency in each resonator has been proposed. This multi-line laser can be used in conventional schemes of the interferometers and polarimeters. This laser can also be used in other multichannel systems to obtain a simultaneous radiation with different frequency in channels. The frequency difference is restricted by an amplification band of a laser  medium. This gives new possibilities for the application of THz lasers in measuring systems.

Keywords: quasi-optical resonator, submillimeter laser, terahertz coherent electromagnetic radiation

Manuscript submitted16.02.2015
PACS     42.60.Da
Radiofiz. elektron. 2015, 20(2): 78-82
Full text  (PDF)

  1. Kamenev, Yu. E., Kiseliov, V. K., Kuleshov, Ye. M., Knyaz'kov, B. N., Kononenko, V. K., Nesterov, P. K., Yanovsky, M. S., 1998. Submillimeter Laser Interferometer-Polarimeter for Plasma Diagnostics. Int. J. Infrared and Millimeter Waves. 19(6), pp. 835–848.DOI: https://doi.org/10.1023/A:1022624423530
  2. Scherbov, V. А. and Nesterov, P. K., 1983. Doppler frequency shifters of submillimeter wave range. In: V. P. Shestopalov, ed. 1983. Fisika i technika mm i submm voln. Kiev: Nauk. dumka Publ. pp. 251–256 (in Russian).
  3. Scherbov, V. А., Кuleshov, Y. М. and Nesterov, P. К., 1988. The submillimeter lasers application in interferometers for the diagnostics of high-temperature plasma. Preprint 376. Kharkov: IRE Akad. nauk UkrSSR (in Russian).
  4. Shmidt, V. V., Dyubko, S. F., Topkov, A. N., Svich, V. A., Valitov, R. A., 1969. Measurement of the gas laser frequency with a wavelength of 0.337 mm and 0.311 mm. Radiotekhnika i Elektronika. 14(9), pp. 1708–1709 (in Russian).
  5. Bondarev, V. A., Valitov, R. A., Zhabotinskiy, M. E., Leykin, A. Ya., Solov'ev, N. S., Telegin, B. V., 1970. НСN laser frequency measurement. Izmeritel'naya tekhnika. 11, pp. 5–8 (in Russian).
  6. Wolfe, S. M., Button, K. J., Waldman, J. and Cohn, D. R., 1976. A modulated submillimeter laser interferometer system for plasma density measurements. Appl. Opt. 15(11), pp. 2645–2648.DOI: https://doi.org/10.1364/AO.15.002645
  7. Кіseliov, V. К. and Radionov, V. P., 2007. Two-frequency ring gas-discharge laser. Ukraine. Pat. 78871 (in Ukrainian).
  8. Kamenev, Yu. E. and Кuleshov, Y. М., 1987. Two-frequency lasing with orthogonal polarizations in the HCN-laser. Kvantovaya elektronika. 14(12), pp. 236–238 (in Russian).
  9. Кіseliov, V. К., Radionov, V. P. and Nesterov, P. К., 2014. Multifrequency terahertz laser. Ukraine. Pat. 106643 (in Ukrainian).
  10. Radionov, V. P., 2005. Submillimeter laser with continuous frequency adjustment within the limits of laser spectrum line. In: V. M. Yakovenko, ed. 2005. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 10(1), pp. 150–153 (in Russian).DOI: https://doi.org/10.1615/TelecomRadEng.v63.i11.70