• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

OPTICAL REFLECTOMETER BASED ON THE METHOD OF SPECTRAL INTERFEROMETRY

Lukin, KA, Tatyanko, DN, Shiyan, YA, Yurchenko, LV, Bazakutsa, AV
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
Е-mail: lukin.konstantin@gmail.com, lukin@ire.kharkov.ua

SMF OPTEL Ltd.
3, Industrialna st., Kharkiv, 61106, Ukraine
Е-mail: info@optel.com.ua

https://doi.org/10.15407/rej2015.02.090
Language: russian
Abstract: 

The paper presents the creation results of the optical low-coherent reflectometer based on spectral interferometry with a heterodyne frequency transfer into the radiorange that allows to measure distances of tens of kilometers. The reflectometer layout for micro-distances based on fiber-optic Fabry-Perot interferometer and broadband infrared source was designed, fabricated and tested. Based on these investigations the feasibility and advisability of using the low-coherence spectral interferometry method for reflectometry measurements of distances for fiber-optic communication lines was demonstrated.

Keywords: broadband sources of optical radiation, high-brightness light emission diodes, optical low-coherence reflectometry, spectral interferometry, the heterodyne frequency transfer

Manuscript submitted  10.02.2015
PACS 07.60.Hv; 42.81.Cn; 42.81.Dp
Radiofiz. elektron. 2015, 20(2): 90-96
Full text  (PDF)

References: 
  1. Listvin, А. V. and Listvin, V. N., 2005. Optical fiber reflectometry. Moscow: LESARart Publ. (in Russian).
  2. Маchekhin, Yu. P., Тimofeev, Ye. P., Raschektaeva, А. I. and Таtyanko, D. H., 2008. Оptical measurements in fiber-optic data transmission systems. Principles and objectives of development. Light Engineering and Power Generation. 2, pp. 45–52 (in Russian).
  3. Sorin, W. and Baney, D., 1992. Measurement of Rayleigh backscatter at 1.55 μm with 32 μm spatial resolution. IEEE Photonics. Technol. Lett., 4(4), pp. 374–376.DOI: https://doi.org/10.1109/68.127218
  4. Yefimov, B. P., Lukin, K. A. and Rakityanskiy, V. А. 1988. Transformation of the spectrum of the stochastic oscillations of an oscillator under the effect of reflections. Zhurnal tekhnicheskoy fiziki, 58(12), pp. 2398–2400 (in Russian).
  5. Lukin, K. A., 1999. Noise radar technology. In: V. M. Yakovenko, ed. 1999. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ., 4(3), pp. 105–111 (in Russian).
  6. Кulyk, V. V., Lukin, К. А., and Rakityanskiy, V. А., 1997. Modification of the technique for double spectral processing of noise signals. Ukrai'ns'kyj metrologichnyj zhurnal, 4, pp. 28–32 (in Russian).
  7. Lukin, K. A., 2001. Millimeter Wave Noise Radar Applications, Theory and Experiment. In: Fourth Int. Kharkov Symp. “Physics and Engineering of Millimeter and Submillimeter Waves” (MSMW’2001). Kharkov, Ukraine, 4–9 June 2001. Kharkov: IRE NAS of Ukraine Publ. Vol. 1.
  8. Lukin, K. A., Kulyk, V. V. and Mogyla, A. A., 2002. Spectral Interferometry method and autodyne (self-mixing) effect for Noise Radar Application. In: First Int. Workshop on the Noise Radar Technology: proc. Yalta, Crimea, Ukraine, 18–20 Sept. 2002.
  9. Mogila, A. A., Lukin, K. A. and Kulik, V. V., 2001. Statistical Errors of Ranging in the Spectral Interferometry Technique. Telecommunications and Radio Engineering, 55(10–11), pp. 67–77.DOI: https://doi.org/10.1615/TelecomRadEng.v55.i10-11.90
  10. Mogila, A., Lukin, K., Kulik, V., 2000. Statistic error of the range measurement using the spectral interferometry method. In: V. M. Yakovenko, ed. 2000. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ., 5(1), pp. 163–170 (in Russian).
  11. Lukin, K. A., Machekhin, Yu. P., Mogila, A. A., Tat'yanko D. N., Babich, V. M., Litvinenko, A. S., 2010. Laser distance meter based on the spectral interferometry method. Prikladnaya radioelektronika, 9(2), pp. 240–245 (in Russian).
  12. Bouma, B. E. and Tearney, G. J., 2001. Handbook of Optical Coherence Tomography. N. Y.: Marcel Dekker Inc.DOI: https://doi.org/10.1201/b14024
  13. Brundavanam, M. M., Viswanathan, N. K. and Narayana Rao, D., 2008. Nanodisplacement measurement using spectral shifts in a white-light interferometer. Appl. Оpt. 47(34), pp. 6334–6339.DOI: https://doi.org/10.1364/AO.47.006334
  14. Hlubina, P., 2002. Dispersive white-light spectral interferometry to measure distances and displacements. Opt. Commun., 212(1–3), pp. 65–70.DOI: https://doi.org/10.1016/S0030-4018(02)01990-9
  15. Lukin, К. А., Маchekhin, Yu. P., Danailov, M. B. and Tatyanko, D. N., 2011. Application of the spectral interferometry method for micro- and nano-distance measurement. Radiofizika i elektronika, 2(16)(1), pp. 39–45 (in Russian).
  16. Lukin, K. A., Danailov, M. B., Machekhin, Yu. P. and Tatyanko, D. N., 2013. Nano-distance measurements using spectral interferometry based on light-emitting diodes. Prikladnaya radioelektronika, 12(1), pp. 166–171 (in Russian).
  17. Manojlović, L. M., 2010. A simple white-light fiber-optic interferometric sensing system for absolute position measurement, Opt. Lasers Eng., 48(4), pp. 486–490.DOI: https://doi.org/10.1016/j.optlaseng.2009.08.008