• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

DOUBLE SCREEN SYSTEM WITH CIRCULAR UNDER-CUTTOF HOLES AS QUASIOPTICAL POLARIZER

Perov, АО, Kirilenko, АA, Derkach, VN, Salogub, AN
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine

12, Proskura st., Kharkov, 61085, Ukraine
E-mail: perov@ire.kharkov.ua

https://doi.org/10.15407/rej2015.03.003
Language: russian
Abstract: 

The polarization plane rotation generally occurs in structures having optical activity, Faraday effect or in liquid crystals. Recently, investigations aimed at creation of artificial environments (metamaterials) with similar properties have been actively carried out. The paper shows that the double screen system with circular holes can rotate polarization plane of incident plane wave, if its periodic cells have the special spatial symmetry. Theoretical and experimental results for fishnet metamaterial based on it are presented. Explanation of the phenomenon is carried out using the method of generalized scattering matrices and taking into account characteristics of the eigenfield spatial distributions, which are specified by the screen system symmetry. It is shown that there are several spatial types of the eigenoscillations, which are responsible for polarization plane rotation under plane wave excitation. Numerical experiments show that the polarization plane rotation can be controlled by changing the structure of the periodic cell, and the polarization plane rotation through specified angles can be achieved even at small distances between screens.

Keywords: chiral structure, metamaterials, polarization plane rotation

Manuscript submitted   02.07.2015 г.
Radiofiz. elektron. 2015, 20(3): 3-10
Full text  (PDF)

References: 
  1. Munk, B. A., 2000. Frequency Selective Surfaces. Theory and Design. N. Y.: Wiley.DOI: https://doi.org/10.1002/0471723770
  2. Wu, T. K., 1995. Frequency Selective Surface and Grid Array. N. Y: Wiley.
  3. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A., 1998. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391(6668), pp. 667–669.DOI: https://doi.org/10.1038/35570
  4. Gordon, R., Brolo, A. G., McKinnon, A., Rajora, A., Leathem, B. and Kavanagh, K. L., 2004. Strong polarization in the optical transmission through elliptical nanohole arrays. Phys. Rev. Lett., 92(3), pp. 037401(4 p.).
  5. Beruete, M., Navarro-Cía, M., Sorolla, M., Campillo, I., 2008. Polarization selection with stacked hole array metamaterial. J. Appl. Phys., 103(5), pp. 053102(4 p.).
  6. Xiao, X., Li, Y., Hou, B., Zhou, B., Wen, W, 2012. Subwavelength polarization rotators via double-layer metal hole arrays. Opt. Lett. 37(17), pp. 3594–3596.DOI: https://doi.org/10.1364/OL.37.003594
  7. Zhang, Y.-L., Jin, W., Dong, X.-Z., Zhao, Z.-S. and Duan, X.-M., 2012. Asymmetric fishnet metamaterials with strong optical activity. Opt. Express. 20(10), pp. 10776–10787.DOI: https://doi.org/10.1364/OE.20.010776
  8. Zhao, R., Zhang, L., Zhou, J., Koschny, Th. and Soukoulis, C. M., 2011. Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index. Phys. Rev. B. 83(3), pp. 035105(4 p.).
  9. Li, Z., Zhao, R., Koschny, T., Kafesaki, M., Alici, K. B., Colak, E., Caglayan, H., Ozbay, E. and Soukoulis, C. M., 2010. Chiral metamaterials with negative refractive index based on four “U” split ring resonators. Appl. Phys. Lett., 97(8), pp. 081901(3 p.).
  10. Zarifi, D., Soleimani, M., Nayyeri, V., Rashed-Mohassel, J., 2012. On the Miniaturization of Semiplanar Chiral Metamaterial Structures. IEEE Trans. on Anten. and Prop., 60(12), pp. 5768–5776.DOI: https://doi.org/10.1109/TAP.2012.2214015
  11. Kirilenko, A. A., Perov, A. O., Don N. G.,The influence of perturbations of a screen with below-cutoff holes on the enhanced transmission resonance response. In: 39th Europ. Microwave Conf. (EuMC): proc. Rome, Italy, 29 Sept. – 01 Oct. 2009. Rome: IEEE. P. 822–825.
  12. Reed, J. A., Byrne, D. M., 1998. Frequency-selective surfaces with multiple apertures within a periodic cell. J. Opt. Soc. Am. A, 15(3), pp. 660–668.DOI: https://doi.org/10.1364/JOSAA.15.000660
  13. Kirilenko, A. A., Kolmakova, N. G., Perov, A. O., Prikolotin, S. A., Derkach, V. N., 2014. Natural oscillations providing 90 polarization plane rotation by planar chiral double-slot irises. Radioelectronics and Communications Systems, 57(12), pp. 521–530.DOI: https://doi.org/10.3103/S0735272714120012
  14. Mackay, A., 1989. Proof of polarization independence and nonexistence of crosspolar terms for targets presenting with special reference to (n > 2) rotational symmetry frequency-selective surfaces. Electron. Lett., 25(24), pp. 1624–1625.DOI: https://doi.org/10.1049/el:19891088
  15. Cornwell, J. F., 1997. Group Theory in Physics: An Introduction. San Diego: Acad. Press.