• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)


Nickolaenko, AP, Galuk, YP, Hayakawa, M

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: sasha@ire.kharkov.ua

Sankt-Petersburg State University
35, University Avenue., St. Petersburg, Peterhof 198504, Russia
E-mail: galyuck@paloma.spbu.ru

Institute Hayakawa, the seismic company electromagnetism,
Incubation Center 508 Telecommunication University,
Chofugaoka 1-5-1, Chofu, Tokyo 182-8585, Japan
E-mail: hayakawa@hi-seismo-em.jp

Language: russian

Investigations of link between parameters of global electromagnetic (Schumann) resonance and characteristics of vertical profile of atmospheric conductivity remain an actual problem. We use a rigorous solution of the electrodynamic problem in the spherical Earth-ionosphere cavity by the full wave technique and compare the results with the knee model, as introduced in the literature. The vertical conductivity profile of the atmosphere was constructed by using parameters of this model, and this allowed us to build the rigorous electromagnetic solution, and to compute the energy spectra of the vertical and horizontal electric magnetic fields corresponding to the uniform distribution of the global thunderstorms over the planet. It is shown that the knee model, discussed in the literature, does not match the rigorous full wave solution and the subsequent computations of the power spectra of Schumann resonance. 

Keywords: schumann resonance, the conductivity of the atmosphere, the full wave solution, the knee model

Manuscript submitted 13.05.2015 г.
PACS     93.85.Pq, 94.20.ws, 94.20.Cf
Radiofiz. elektron. 2015, 20(3): 30-37
Full text  (PDF)

  1. Nickolaenko, A. P. and Hayakawa, M., 2002. Resonances in the Earth-ionosphere cavity. Dordrecht-Boston-L.: Kluwer Academic Publ.
  2. Nickolaenko, A. and Hayakawa, M., 2014. Schumann resonance for tyros (Essentials of Global Electromagnetic Resonance in the Earth–Ionosphere Cavity). Tokyo-Heidelberg-N. Y.-Dordrecht-L.: Springer. Ser. XI. Springer Geophysics.
  3. Ishaq, M. and Jones, D. Ll., 1977. Method of obtaining radiowave propagation parameters for the Earth–ionosphere duct at ELF. Electron. Lett., 13(2), pp. 254–255.DOI: https://doi.org/10.1049/el:19770184
  4. Kirillov, V. V., Kopeykin, V. N., and Mushtak, V. C., 1997. Electromagnetic waves of ELF band in the Earth–ionosphere cavity. Geomagnetizm i aeronomiya, 37(3), pp. 114–120 (in Russian).
  5. Kirillov, V. V., 1996. 2D theory of ELF electromagnetic wave propagation in the Earth–ionosphere cavity. Izv. Vyssh.Uchebn. Zaved. Radiofiz., 39(12), pp. 1103–1112 (in Russian).
  6. Kirillov, V. V. and Kopeykin, V. N., 2002. Solution of 2D telegraph equations with anisotropic parameters. Izv. Vyssh.Uchebn. Zaved. Radiofiz., 45(12), pp. 1011–1024 (in Russian).
  7. Pechony, O. and Price, C., 2004. Schumann resonance parameters calculated with a partially uniform knee model on Earth, Venus, Mars, and Titan. Radio Sci., 39(5), pp. RS5007 (10 р.).
  8. Yang, H. and Pasko, V. P., 2005. Three-dimensional finite-difference time domain modeling of the Earth-ionosphere cavity resonances. Geophys. Res. Lett., 32(3), pp. L03114 (4 p.).
  9. Morente, J. A., Molina-Cuberos, G. J., Portí, J. A., Besser, B. P., Salinas, A., Schwingenschuch, K. and Lichtenegger H., 2003. A numerical simulation of Earth’s electromagnetic cavity with the Transmission Line Matrix method: Schumann resonances. J. Geophys. Res., 108(A5), pp. SIA 17(11 p.).
  10. Cole, R. K. and Pierce, E. T., 1965. Electrification in the Earth’s atmosphere from altitudes between 0 and 100 kilometers, J. Geophys. Res., 70(11), pp. 2735-2749..DOI: https://doi.org/10.1049/el:19770184
  11. Mushtak, V. C. and Williams, E., 2002. Propagation parameters for uniform models of the Earth-ionosphere waveguide, J. Atmos. Solar-Terr. Phys., 64(6), pp. 1989–2001..DOI: https://doi.org/10.1016/S1364-6826(02)00222-5
  12. Greifinger, C. and Greifinger, P., 1978. Approximate method for determining ELF eigenvalues in the Earth-ionopshere waveguide. Radio Sci., 13(5), pp. 831-837..DOI: https://doi.org/10.1029/RS013i005p00831
  13. Nickolaenko, A. P. and Rabinowicz, L. M., 1982. On a possibility of global electromagnetic resonances at the planets of Solar system. Kosmicheskie issledovaniya, 20(1), pp. 82–89 (in Russian).
  14. Nickolaenko, A. P. and Rabinowicz, L. M., 1987. On applicability of ELF global resonances for studing thunderstorm activity at Venus. Kosmicheskie issledovaniya, 25(2), pp. 301–306 (in Russian).
  15. Sentman, D. D., 1990. Electrical conductivity of Jupiter Shallow interior and the formation of a resonant planetary-ionospheric cavity. Icarus, 88(1), pp. 73–86..DOI: https://doi.org/10.1016/0019-1035(90)90177-B
  16. Füllekrug, M., 2000. Dispersion relation for spherical electromagnetic resonances in the atmosphere. Phys. Lett. A, 275(1–2), pp. 80–89..DOI: https://doi.org/10.1016/S0375-9601(00)00549-1
  17. Williams, E. R., Mushtak, V. C. and Nickolaenko, A. P., 2006. Distinguishing ionospheric models using Schumann resonance spectra. J. Geophys. Res.: Atmos., 111(D16), pp. D16107 (12 p.).
  18. Toledo-Redondo, S., Salinas, A., Morente-Molinera, J. A., Méndez, A., Fornieles, J., Portí, J. and Morente, J. A., 2013. Parallel 3D-TLM algorithm for simulation of the Earth-ionosphere cavity. J. Comput. Phys., 236(3), pp. 367–379..DOI: https://doi.org/10.1016/j.jcp.2012.10.047
  19. Molina-Cuberos, G. J., Morente, J. A., Besser, B. P., Portí, J., Lichtenegger, H., Schwingenschuh, K., Salinas, A. and Margineda, J. 2006. Schumann resonances as a tool to study the lower ionospheric structure of Mars. Radio. Sci., 41(1), pp. RS1003 (8 p.).
  20. Zhou, H., Yu, H., Cao, B., Qiao, X., 2013. Diurnal and seasonal variations in the Schumann resonance parameters observed at Chinese observatories. J. Atmos. Solar-Terr. Phys., 98(1), pp. 86–96..DOI: https://doi.org/10.1016/j.jastp.2013.03.021
  21. Sentman, D. D., 1990. Approximate Schumann resonance parameters for a two-scale-height ionosphere. J. Atmos. Terr. Phys., 52(1), pp. 35–46..DOI: https://doi.org/10.1016/0021-9169(90)90113-2
  22. Greifinger, P. S., Mushtak, V. C. and Williams, E. R., 2007. On modeling the lower characteristic ELF altitude from aeronomical data. Radio Sci., 42(2), pp. RS2S12 (12 р.).
  23. Hynninen, E. M. and Galuk, Yu. P., 1972. Field of vertical dipole over the spherical Earth with non-uniform along height ionosphere. Problemy difraktsii i rasprostraneniya radiovoln, 11, pp. 109–120 (in Russian).
  24. Bliokh, P. V., Galiuk, Iu. P., Giunninen, E. M., Nikolaenko, A. P., Rabinovich, L. M., 1977. On the resonance phenomena in the Earth-ionosphere cavity. Izv. Vyssh. Uchebn. Zaved. Radiofiz., 20(4), pp. 501–509. DOI: 10.1007/BF01033918 (in Russian)..DOI: https://doi.org/10.1007/BF01033918
  25. Bliokh, P. V., Nickolaenko, A. P., and Filippov, Yu. F., 1980. Schumann resonances in the Earth-ionosphere cavity. New York: Peter Perigrinus.
  26. Galuk, Yu. P. and Ivanov, V. I., 1978. Deducing the propagation charactericics of VLF fields in the cavity Earth–non-uinform along the height anisotropic ionosphere. Problemy difraktsii i rasprostraneniya radiovoln, 16, pp. 148–153 (in Russian).
  27. Galuk, Yu. P., Nickolaenko, A. P., and Hayakawa, M., 2015. Comparison of exact and approximate solutions of the Schumann resonance problem for the knee conductivity profile. Radiofizika i elektronika, 6(20)(2), pp. 40–46 (in Russian).
  28. Bannister, P. R., 1999. Further examples of seasonal variations of ELF radio propagation parameters. Radio Sci., 34(1), pp. 199–208..DOI: https://doi.org/10.1029/1998RS900003
  29. Nickolaenko, A. P., 2008. ELF attenuation factor derived from distance dependence of radio wave amplitude propagating from an artificial source. In: V. M. Yakovenko, ed. 2008. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 13(1), pp. 40–44 (in Russian) .DOI: https://doi.org/10.1615/TelecomRadEng.v67.i18.20
  30. Nikolaenko, A. P., 2008. ELF attenuation factor derived from distance dependence of radio wave amplitude propagation from an artificial source. Telecommunications and Radio Engineering, 67(18), pp. 1621–1629..DOI: https://doi.org/10.1615/TelecomRadEng.v67.i18.20