• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)


Veselovska, G

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: veselovskaya3@ukr.net

Language: russian

Snow is the most common type of solid precipitation, therefore the development of remote sensing methods for studying the characteristics of snow by solving the inverse problems based on a detailed study of properties of such phenomena is of a considerable interest. In general, the calculating problem of reflection characteristics for nonspherical particles of precipitation has a long history, but researches of inverse radar scattering of liquid precipitation are characterized by the most completeness. The review of mechanical and electrical properties of snow was performed and the characteristics of physical and numerical modeling of the radar scattering characteristics for precipitation particles are analyzed. The paper shows the feasibility of studying the radar scattering characteristics of precipitation particles and it the advantages and disadvantages of the modern calculation methods of radar scattering characteristics for dielectric objects were analyzed. Remote measurement of integral characteristics of snowfalls over large areas allows determining the reservation of water for agriculture, as well as components of the hydrological forecasts and providing avalanche safety in mountainous areas.

Keywords: crystal of snow, radar cross section, rain intensity

Manuscript submitted  02.07.2015 г.
PACS     07.07.Vx
УДК 528.88:551.578.41(047)
Radiofiz. elektron. 2015, 20(3): 38-48
Full text  (PDF)

  1. Dyunin, A. K., 1983. In the world of snow. Novosibirsk: Nauka Publ. (in Russian).
  2. Nakaya, U., 1954. Snow crystals: Natural and artificial. Harvard Univ. Press..DOI: https://doi.org/10.4159/harvard.9780674182769
  3. Relative humidity [online]. Available at: https://en.wikipedia.org/wiki/Relative_humidity
  4. Kobayashi, T., 1961. The growth of snow crystals at low supersaturations. Philos. Mag., 6(71), pp. 1363–1370..DOI: https://doi.org/10.1080/14786436108241231
  5. Pruppacher, H. R. and Klett, J. D., 1997. Microphysics of Clouds and Precipitation. Dordrecht: Kluwer Acad. Publ.
  6. Auer, A. H. and Veal, D. L., 1970. The dimension of ice crystals in natural clouds. J. Atmos. Sci., 27(6), pp. 919–926..DOI: https://doi.org/10.1175/1520-0469(1970)027<0919:TDOICI>2.0.CO;2
  7. Davis, 1974. PhD. Thesis, Depart. Environ. Sciences, Univ. of Wyoming, Laramie, Wyoming.
  8. Heymsfield, A. J., 1972. Ice crystal terminal velocities. J. Atmos. Sci., 29(7), pp. 1348–1357..DOI: https://doi.org/10.1175/1520-0469(1972)029<1348:ICTV>2.0.CO;2
  9. Hobbs, P. V., Chang, S. and Locatelli, J. D., 1974. The Dimensions and Aggregation of Ice Crystals in Natural Clouds. J. Geoph. Res., 79(15), pp. 2199–2206..DOI: https://doi.org/10.1029/JC079i015p02199
  10. Klaassen, W., 1988. Radar observations and simulation of the melting layer of precipitation. J. Atmos. Sci., 45(24), pp. 3741–3753.DOI: .https://doi.org/10.1175/1520-0469(1988)045<3741:ROASOT>2.0.CO;2
  11. Matsuo, T. and Sasyo, Y., 1981. Melting of snowflakes below freezing level in the atmosphere. J. Meteor. Soc. Japan, 59(1), pp. 10–24..DOI: https://doi.org/10.2151/jmsj1965.59.1_10
  12. Magono, C. and Nakamura, T., 1965. Aerodynamic study of falling snowflakes. J. Meteor. Soc. Japan, 43(3), pp. 139–143..DOI: https://doi.org/10.2151/jmsj1965.43.3_139
  13. Permittivity [online]. Available at: https://en.wikipedia.org/wiki/Permittivity
  14. Hallikainen, M., Ulaby, F. T. and Abdel-Razik, M., 1982. Measurements of the dielectric properties of snow in the 4–18 GHz frequency range. In: 12th Eur. Microwave Conf. (EUMA): Proc. Helsinki, Finland, 13–17 Sept. 1982. IEEE.
  15. Ambach, W. and Denoth, A., 1980. The dielectric behavior of snow: A study versus liquid water content. In: A. Rango, ed. 1980. NASA Workshop on the Microwave Remote Sensing of Snowpack Properties: proc. USA, Colorado, Ft. Collins, 20–22 May 1980. NASA CP-2153.
  16. Denoth, A., Foglar, A., Weiland, P., Mätzler, C., Aebischer, H., Tiuri, M. and Sihvola, A., 1984. A comparative study of instruments for measuring the liquid water content of snow. J. Appl. Phys., 57(7), pp. 2154–2160..DOI: https://doi.org/10.1063/1.334215
  17. Gunn, K. L. S. and Marshall, J. S., 1958. The distribution with size aggregate of snowflakes. J. Atmos. Sci., 15(5), pp. 452–461..DOI: https://doi.org/10.1175/1520-0469(1958)015<0452:TDWSOA>2.0.CO;2
  18. Abshaev, M. T., Dadali, Yu. A. and Sizhazhev, S. M., 1971. Study of snowfall microstructure. Trudy VGI. 19, pp. 49–56 (in Russian).
  19. Litvinov, I. V., 1959. The experience of studying the size distribution of snowfall particles. Izv. Akad. Nauk SSSR, Geophys., 10, pp. 22–27 (in Russian).
  20. Harimaya, T., Ishida, H. and Muramoto, K., 2000. Characteristics of snowflake size distributions connected with the difference of formation mechanism. J. Meteor. Soc. Japan, 78(3), pp. 233–239..DOI: https://doi.org/10.2151/jmsj1965.78.3_233
  21. Senn, P. and Barthazy, E., 2004. In-situ observations and modeling of aggregation of snowfall. In: Third Eur. Conf. Radar in Meteorology and Hydrology (ERAD) Together with the COST 717 Final Seminar: proc. Visby, Island of Gotland, Sweden, 6–10 Sept. 2004. Copernicus GmbH, 2004.
  22. Gunn, K. L. S. and Marshall, J. S., 1958. The distribution with size aggregate of snowflakes. J. Atmos. Sci., 15(5), pp. 452–461..DOI: https://doi.org/10.1175/1520-0469(1958)015<0452:TDWSOA>2.0.CO;2
  23. Sekhon, R. S. and Srivastava, R. C., 1970. Snow size spectra and radar reflectivity. J. Atmos. Sci., 27(2), pp. 299–307..DOI: https://doi.org/10.1175/1520-0469(1970)027<0299:SSSARR>2.0.CO;2
  24. L'vova, L. A., 2003. Radar visibility of aircraft. Snezhinsk: RFNC–VNIITF (in Russian).
  25. Gerhardt, J. R., Tolbert, C. W., Brunstein, S. A. and Bahn, W. W., 1961. Experimental determinations of the back-scattering cross-sections of water drops and of wet and dry ice spheres at 3.2 centimeters. J. Meteor. 18, pp. 340–347..DOI: https://doi.org/10.1175/1520-0469(1961)018<0340:EDOTBS>2.0.CO;2
  26. Allan, L. E. and McCormick, G. C., 1978. Measurements of the backscatter matrix of dielectric spheroids. IEEE Trans. Antennas Propag., 26(4), pp. 579–587..DOI: https://doi.org/10.1109/TAP.1978.1141897
  27. Allan, L. E. and McCormick, G. C., 1980. Measurements of the backscatter matrix of dielectric bodies. IEEE Trans. Antennas Propag. 28(2), pp. 166–169..DOI: https://doi.org/10.1109/TAP.1980.1142309
  28. Khlopov, G. I., 1999. Coherent radar of millimeter range. Zarubezhnaya radioelektronika. Uspehi sovremennoy radioelektroniki. 9, pp. 3–27 (in Russian).
  29. Korostelev, V. S., Khlopov, G. I. and Shestopalov, V. P., 1991. Experimental study of coherent signal spectra reflected from the snowfall in the range of 140 GHz. Izv. Vyssh.Uchebn. Zaved. Radiofiz., 34(3), pp. 227–233 (in Russian)..DOI: https://doi.org/10.1007/BF01066497
  30. Khlopov, G. I., 1997. Spectra of the Coherent Millimeter Wave Signals, reflected from Hydrometeors. Telecommunications and Radio Engineering, 51(1), pp. 17–24..DOI: https://doi.org/10.1615/TelecomRadEng.v51.i1.20
  31. Yurkin, M. A. and Hoekstra, A. G., 2007. The discrete dipole approximation: an overview and recent developments. J. Quant. Spectros. and Radiat. Transfer, 106(1–3), pp. 558–589..DOI: https://doi.org/10.1016/j.jqsrt.2007.01.034
  32. Taflove, A. and Umashankar, K. R., 1989. Review of FDTD Numerical Modeling of Electromagnetic Wave Scattering and Radar Cross Section. IEEE Trans. Antennas Propag., 77(5), pp. 682–699.
  33. Shankar, V., Hall, W. F. and Mohammadian, A. H., 1989. A Time-Domain Differential Solver for Electromagnetic Scattering Problems. IEEE Trans. Antennas Propag., 77(5), pp. 709–721..DOI: https://doi.org/10.1109/5.32061
  34. Cole, J. B., (2002), High-Accuracy Yee Algorithm Based on Nonstandard Finite Differences: New Development and Verifications. IEEE Trans. Antennas Propag., 50(9), pp. 1185–1191..DOI: https://doi.org/10.1109/TAP.2002.801268
  35. Rylander, T. and Bondeson, A., 2002. Application of Stable FEM-FDTD Hybrid to Scattering Problems. IEEE Trans. Antennas Propag., 50(2), pp. 141–144..DOI: https://doi.org/10.1109/8.997982
  36. Uluişik, Ç., Çakir, G., Çakir, M. and Sevgi, L., 2008. Radar Cross Section (RCS) Modeling and Simulation. Part 1: A Tutorial Review of Definitions, Strategies, and Canonical Examples. IEEE Antennas and Propagations Magazine, 50(1), pp. 115–126..DOI: https://doi.org/10.1109/MAP.2008.4494511
  37. Sun, W., Fu, Q., and Chen, Z., 1999. Finite-difference time domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition. Appl. Opt., 38(15), pp. 3141–3151..DOI: https://doi.org/10.1364/AO.38.003141
  38. Mishchenko, M. I., Hovenier, J. W. and Travis, L. D., 2000. Light scattering by nonspherical particles: Theory, measurements, and applications. London: Academic Press.
  39. Barber, P. and Yeh, C., 1975. Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies. Appl. Opt. 14(12), pp. 2864–2872..DOI: https://doi.org/10.1364/AO.14.002864
  40. Mittra, R. ed., 1973. Computer Techniques for Electromagnetics. New York: Pergamon Press.
  41. Vasiliev, E. N., 1987. Excitation of revolution bodies. Moscow: Radio i svyaz' Publ. (in Russian).
  42. Dmitriev, V. I. and Zakharov, E. V., 1987. Integral equations in boundary-value problems of electrodynamics. Moscow: MGU Publ. (in Russian).
  43. Harrington, R. F., 1989. Boundary Integral Formulations for Homogeneous Material Bodies. J. ELECTROMAGNET WAVE, 3(1), pp. 1–15..DOI: https://doi.org/10.1163/156939389X00016
  44. Khizhnyak, M. A., 2003. Theory of wave processes: tutorial. Kharkiv: Shtrikh Publ. (in Russian).
  45. Ylä-Oijala, P. and Taskinen, M., 2005. Application of Combined Field Integral Equation for Electromagnetic Scattering by Dielectric and Composite Objects. IEEE Trans. Antennas Propag., 53(3), pp. 1168–1173..DOI: https://doi.org/10.1109/TAP.2004.842640
  46. Ylä-Oijala, P. and Taskinen, M., 2005. Well-Conditioned Müller Formulation for Electro-magnetic Scattering by Dielectric Objects. IEEE Trans. Antennas Propag., 53(10), pp. 3316–3323..DOI: https://doi.org/10.1109/TAP.2005.856313
  47. Ylä-Oijala, P., Taskinen, M. and Sarvas, J., 2005. Surface integral equation method for General Composite Metallic and Dielectric Structures with Junctions. Prog. Electromagn. Res. (PIER), 52, pp. 81–108..DOI: https://doi.org/10.2528/PIER04071301
  48. Yan, S., Jin, J. M. and Nie, Z., 2011. Improving the Accuracy of the Second-Kind Fredholm Integral Equations by Using the Buffa-Christiansen Functions. IEEE Trans. Antennas Propag., 59(4), pp. 1299–1310..DOI: https://doi.org/10.1109/TAP.2011.2109364
  49. Ubeda, E., Tamayo, J. M. and Rius, L. M., 2011. Taylor-Orthogonal Basis Functions for the Discretization in Method of Moments of Second Kind Integral Equations in the Scattering Analysis of Perfectly Conducting or Dielectric Objects. Prog. Electromagn. Res. (PIER), 119, pp. 85–105..DOI: https://doi.org/10.2528/PIER11051715
  50. Volakis, J. L. and Sertel, K., 2012. Integral Equation Methods for Electromagnetics. Raleigh: SciTech Publ., Inc..DOI: https://doi.org/10.1049/SBEW045E
  51. Sukharevsky, O. I., Zalewskiy, G. and Veselovska, G. B., 2015. Calculation of radar scattering characteristics of hydrometeors by integral equation method. Prikladnaya radioelektronika, 14(1), pp. 111–118 (in Russian).
  52. Oguchi, T., 1966. Scattering and absoption of a millimeter wave due to melting hailstones. J. Radio Res. Labs. 13, pp. 141–172.
  53. Holt, A. R., 1982. Electromagnetic wave scattering by spheroids: A comparison of experimental and theoretical results. IEEE Trans. Antennas Propag., 30(4), pp. 758–760..DOI: https://doi.org/10.1109/TAP.1982.1142864
  54. Nomarich, J., Welman, R. J. and Lacomb, J., 1988. Backscatter and Attenuation by Falling Snow and Rain at 96, 140 and 225 GHz. IEEE Trans. Geosci. Remote Sens., 26(3), pp. 39–329..DOI: https://doi.org/10.1109/36.3034
  55. Kulemin, G. P., 1985. Backscattering of radio waves of centimeter and millimeter range by precipitation and other atmospheric formations. Preprint No 287. Kharkov: IRE NAS of Ukraine (in Russian).
  56. Geister, S. R., 2000. Statistical characteristics of spectral portraits of disturbances caused by rain clouds in the centimeter wave range. Electromagnitnye volny i elektronnye sistemy, 5(2), pp. 25–34 (in Russian).
  57. Wallace, A. B., 1988. Millimeter-wave propagation measurements at the ballistic research laboratory. IEEE Trans. Geosci. Remote Sens., 26(3), pp. 253–258..DOI: https://doi.org/10.1109/36.3028
  58. Richard, V. W., Kammerer, J. F. and Wallace, A. B., 1988. Rain backscatter measurements at millimeter wavelengths. IEEE Trans. Geosci. Remote Sens., 26(3), pp. 244–252..DOI: https://doi.org/10.1109/36.3027
  59. Van de Hulst, H. C., 1957. Light Scattering by Small Particles. Translated and ed. from English by V. V. Sobolev. Moscow: Inostrannaya literatura Publ. (in Russian).
  60. Veselovska, G. B., 2014. Backscattering of electromagnetic waves by polydisperse medium of nonspherical drops in the problems of double frequency remote sensing. PhD thesis ed. O. Ya. Usikov IRE of NASU, Kharkiv, Ukraine (in Russian).
  61. Shupyatskiy, A. B., 1960. The radar measurement of intensity and other characteristics of rain. Moscow: Gidrometeoizdat (in Russian).
  62. Kane, Yee, 1966. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propag., 14(3), pp. 302–307..DOI:  https://doi.org/10.1109/TAP.1966.1138693