• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

RADIATION Q-FACTOR OF DIFFERENT SHAPE DIELECTRIC RESONATORS WITH TESTED CONDUCTORS AND LIQUID DIELECTRICS

Barannik, AA, Vitusevich, SA, Protsenko, IA, Kharchenko, MS, Cherpak, NT
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: ira_protsenko@bk.ru

Peter Grünberg Institute Forschungszentrum Juelich, Julich, Germany

https://doi.org/10.15407/rej2015.03.055
Language: russian
Abstract: 

While using whispering gallery modes dielectric resonators as measurement cells for finding the electrophysical parameters of materials it is necessary to choose the resonator structure, which is characterized by the acceptable radiation Q-factor values. Calculation of radiation Q-factor by analytical methods is possible for simple symmetric structures only. The numerical study of different shape resonators made of leucosapphire, which are limited with conducting end plates and without them are carried out in Ka-band. The disk resonators with one conducting end plate are studied experimentally too. The influence of tested material brought in the electromagnetic field on the resonator field distribution, frequency and radiation Q-factor is shown. The application opportunity of measurement cells based on such resonators for determination of (super)conductor microwave impedance and permittivity of dielectric liquids is analyzed. The obtained results make it possible to choose the resonator measurement cell with negligible radiation loss. 

Keywords: dielectric permittivity liquids, dielectric resonator, radiation Q-factor, superconductor

Manuscript submitted  01.07.2015 г.
PACS     07.05.Tp; 84.40.-x; 42.60.Da
Radiofiz. elektron. 2015, 20(3): 55-61
Full text  (PDF)

References: 
  1. Cherpak, N., Barannik, A., Filipov, Yu., Prokopenko, Yu. and Vitusevich, S., 2003. Accurate microwave technique of surface resistance measurement of large-area HTS films using sapphire quasioptical resonator. IEEE Trans. Appl. Supercond., 13(2), pp. 3570–3573..DOI: https://doi.org/10.1109/TASC.2003.812400
  2. Gubin, A. I., Barannik, A. A., Protsenko, I. A., Cherpak, N. T., Offenhaeusser, A., Vitusevich, S., 2013. Biochemical liquids permittivity characterization technique based on whispering-gallery mode resonator with microfluidic channel. In: Proc. of 43rd Europ. Microwave Conf. (EuMC). Nuremberg, Germany, 6–10 Oct. 2013, pp. 314–317.
  3. Barannik, A., Cherpak, N. T., Tanatar, M. A., Vitusevich, S., Skresanov, V., Canfield, P. C. and Prozorov, R., 2013. Millimeter-wave surface impedance of optimally-doped Ba(Fe1−xCox)2As2 single crystals. Phys. Rev. B., 87(1), pp. 014506(7 p.).
  4. Barannik, A. A., Cherpak, N. T., Wu, Yu., Luo Sh., He, Yu., Kharchenko, M.S., Porch, A., 2014. Unusual microwave response and bulk conductivity of very thin FeSe0.3Te0.7 film as a function of temperature. Low Temp. Phys., 40(6), pp. 636–644..DOI: https://doi.org/10.1063/1.4881178
  5. Krupka, J., Strupinski, W. and Kwietniewski, N., 2011. Microwave Conductivity of Very Thin Graphene and Metal Films. J. Nanosci. Nanotechnol., 11(4), pp. 3358–3362..DOI: https://doi.org/10.1166/jnn.2011.3728
  6. Gubin, A. I., Barannik, A. A., Cherpak, N. T., Protsenko, I. A., Pud, S., Offenhäusser, A., Vitusevich, S. A., 2015. Whispering-Gallery-Mode Resonator Technique With Microfluidic Channel for Permittivity Measurement of Liquids. IEEE Trans. Microwave Theory Tech., 63(6), pp. 2003–2009..DOI: https://doi.org/10.1109/TMTT.2015.2423289
  7. Kirichenko, A. Ya., Prokopenko, Yu. V., Filippov, Yu. F. and Cherpak, N. T., 2008. Quasioptical solid resonators. Kiev: Naukova Dumka Publ. (in Ukrainian).
  8. Barannik, A. A., Bunyayev, S. O. and Cherpak, N. T., 2008. About low-temperature microwave response of epitaxial YBa2Cu3O7–d film measured by a novel measurement technique. Low Temp. Phys., 34(12), pp. 977–981..DOI: https://doi.org/10.1063/1.3029749
  9. Braginsky, V. B., Ilchenko, V. S. and Bagdassarov, K. S., 1987. Experimental observation of fundamental microwave absorption in high quality dielectric crystals. Phys. Lett. A, 120(6), pp. 300–305..DOI: https://doi.org/10.1016/0375-9601(87)90676-1
  10. Barannik, A. A., Cherpak, N. T., Kharchenko, M. S. and Vitusevich, S. A., 2013. Hemispherical and aspheric WGM dielectric resonators with conducting endplates: radiation and conductivity losses depending on shape of the resonator surface. Radiofizika i elektronika, 18(4), pp. 49–54 (in Russian).
  11. Braginsky, V. B., Mitrofanov, V. P. and Panov, V. I., 1981. Systems with a low. Moscow: Nauka Publ. (in Russian).
  12. Barannik, A. A., Cherpak, N. T., Prokopenko, Yu. V., Filipov, Yu. F., Shaforost, E. N. and Shipilova, I. A., 2007. Two-layered disc quasi-optical dielectric resonators: electrodynamics and application perspectives for complex permittivity measurements of lossy liquids. Meas. Sci. Technol., 18(7), pp. 2231–2238..DOI: https://doi.org/10.1088/0957-0233/18/7/057
  13. Gubin, A. I., Lavrinovich, A. A. and Cherpak, N. T., 2006. Dielectric resonators with „Whispering-gallery“ waves in investigations of small-volume binary solutions. Ukr. Phys. J., 51(7), pp. 723–727 (in Russian).