• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)


Botsula, OV, Prykhodko, КH

V. N. Karazin Kharkov National University
4 Svobody Sq., Kharkiv, 61022, Ukraine
E-mail: oleg.botsula@mail.ru

Language: russian

The sources of noise in the microwave and mm-cm bands with high noise power spectral density have a number of important applications, including communications, automotive location and radiomeasurement. However, there is not many efficient solid-state generators of noise at frequencies above 40 GHz. The proposed active element for noise generating (heterostructure-based diodes with the cathode static domain) may be one of them. In these paper the static, impedance and noise characteristics of the GaAs–AlGaAs and AlGaAs–GaAs-based structures were investigated. In this structures the static domain of the strong field is formed due to doping profile at the heterojunction. The characteristics of considered diodes are compared to those of similar GaAs-based devices. The existence of regions in diodes with negative resistance at frequencies close to 50 GHz was shown. The GaAs–AlGaAs-based heterostructure has the best performance for a noise generation in the frequency range of 25…75 GHz. The main properties of proposed structures are determined and can be used for further detailed analysis of physical processes of the structures and manufacturing. 

Keywords: domain, electric field strength, frequency range, heterojunction, impact ionization, impedance

Manuscript submitted  03.07.2015 г.
PACS     73.40.Kp
Radiofiz. elektron. 2015, 20(3): 66-71
Full text  (PDF)

  1. Zolotarev, E. S., Prokhorov, E. D., 1990. Models of diodes with a cathode static domain. Radiotekhnika i elektronika, 35(10), pp. 2221–2223 (in Russian).
  2. Prokhorov, E. D., Botsula, O. V., Sокоlоv, S. B., 2010. Influence parameter diode with cathode static domain upon oscillation threshold of UHF noise. Radiofizika i elektronika, 1(15)(1), pp. 91–95 (in Russian).
  3. Prokhorov, E. D., Skorobogatova, S. N., 1985. The noise spectrum of a diode with a cathode static domain. Radiotekhnika i elektronika, 31(7), pp. 1447–1449 (in Russian).
  4. Prokhorov, E. D., Zolotarev, E. S., 1989. Diode for generating microwave noise. USSR Autorʼs Certificfte 1,591,775 (in Russian).
  5. Prokhorov, E. D., Botsula, O. V., 2009 Diode with cathode static domain as the source of HF-noise. In: 19th Int. Crimean Conf. Microwave and Telecommunication Technology (CriMiCo’2009): Proc. Sevastopol, Ukraine, 14–18 Sept. 2009. 1, pp. 93–94.
  6. Prokhorov, E. D., Botsula, O. V., Dyadchenko, A. V., Gorbunov, I. A., 2013. Monte Carlo simulation of diodes with a cathode static domain. In: 23rd Int. Crimean Conf. Microwave and Telecommunication Technology (CriMiCo’2013): Proc. Sevastopol, Ukraine, 9–13 Sept. 2013. 1, pp. 139–140.
  7. Cook, R. K., Frey, J., 1981. Diffusion effects “Ballistic Transport”. IEEE Trans. Electron Devices, 28(8), pp. 951–953..DOI: https://doi.org/10.1109/T-ED.1981.20465
  8. Adachi, S., 1985. GaAs, AlAs, and AlxGa1–xAs: Material parameters for use in research and device applications. J. Appl. Phys., 58(3), pp. 1–29..DOI: https://doi.org/10.1063/1.336070
  9. Vurgaftman, I., Meyer, J. R., Ram-Mohan, L. R., 2001. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys., 89(11), pp. 5815–5875..DOI: https://doi.org/10.1063/1.1368156
  10. Jacoboni, C., Reggiani, L., 1983. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys., 55(3), pp. 675–705..DOI: https://doi.org/10.1103/RevModPhys.55.645
  11. Canali, C., Pavan, P., Di Carlo, A., Lugli, P., Malik, R., Manfredi, M., Neviani, A., Vendrame, L., Zanoni, E. and Zancller, G., 1996. Experimental and Monte Carlo Analysis of Impact-Ionization in AlGaAs/GaAs HBT’s. IEEE Trans. Electron Devices, 43(11), pp. 1769–1777..DOI: https://doi.org/10.1109/16.542420
  12. Garcias-Salva, P., Lopez-Gonzalez, J. M., Prat, L., 2000. Effects of the emitter-base effective-mass difference on the collector current in InP/InGaAs HBTs A Monte Carlo study. Microelectron. Eng., 51–52, pp. 415–424..DOI: https://doi.org/10.1016/S0167-9317(99)00513-4
  13. Hockney, R. W., Eastwood, J. W., 1987. Computer Simulation Using Particles. Translated from English and ed. by R. Z. Sagdeev, V. I. Shevchenko. Moscow: Mir Publ. (in Russian)