• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

THE DETERMINATION OF NEARSHORE WAVES PARAMETERS BY THE INTERFEROMETRIC SYNTHETIC APERTURE RADAR

Goncharenko, U, Farquharson, G, Gorobets, V
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: gorobets777@mail.ru

Applied Physics Laboratory, University of Washington, Seattle, USA

https://doi.org/10.15407/rej2015.04.018
Language: russian
Abstract: 

Nearshore zones have a significant impact on life and economics. Along with the weather and climate stabilizing factor, caused by the water proximity, on the border of land and sea occur specific gradients and flows of heat, moist, pressure, etc. They might cause dangerous nature phenomena such as hurricanes, floods, etc. which need to be predicted and monitored. The remote sensing of neashore zone might be a part of such monitoring. The results of microwave remote sensing of neashore zone of New River inlet obtained by frequency-modulated continuous wave along-track interferometric synthetic aperture radar are presented. The estimation of neashore waves parameters such as wave height, phase velocity, etc. using ATI SAR images are performed. The algorithm for the estimation of bandwidth and shape of the radial velocity spectrum of braking wave is proposed and the dependence of the bandwidth of radial velocity spectrum on significant wave height is obtained.

Keywords: breaking waves, remote sensing, synthetic aperture radar

Manuscript submitted  14.12.2015 г.
PACS     84.40. Xb; 92.10.H
Radiofiz. elektron. 2015, 20(4): 18-23
Full text  (PDF)

References: 
  1. Nearshore zone [online]. Available at: http://wiki.wargaming.net/ru/Navy
  2. Young, I. R., Rosenthal, W. and Ziemer, F., 1985. A three-dimensional analysis of marine radar images for the determination of ocean wave directionality and surface currents. J. Geophys. Res., 90(C1), pp. 1049–1059. DOI: https://doi.org/10.1029/JC090iC01p01049
  3. McGregor, J. A., Poulter, E. M. and Smith, M. J., 1997. Ocean surface currents obtained from microwave sea-echo Doppler spectra. J. Geophys. Res., 102(C11), pp. 25227–25236. DOI: https://doi.org/10.1029/97JC00981
  4. Moller, D., Frasier, S. J., Porter, D. L. and McIntosh, R. E., 1998. Radar-derived interferometric surface currents and their relationship to subsurface current structure. J. Geophys. Res. 103(C6), pp. 12839–12852. DOI: https://doi.org/10.1029/98JC00781
  5. Trizna, D. B., 2001. Errors in bathymetric retrievals using linear dispersion in 3-D FFT analysis of marine radar ocean wave imagery. IEEE Trans Geosci Remote Sens., 39(11), pp. 2465–2469. DOI: https://doi.org/10.1109/36.964983
  6. Farquharson, G., Widjaja, D. and Jessup, A., 2002. A miniaturized dual-beam along-track interferometric SAR for nearshore ocean remote sensing. In: Int. Geosci. Remote Sens. Symp. (IGARSS 2012): proc. Munich, Germany, 22–27 July, 2012. IEEE
  7. Eshbaugh, J. V. and Frasier, S. J., 2002. Measurement of Sea Surface Displacement with Interferometric Radar. J. Atmos & Oceanic Tech., 19(7), pp. 1087–1095. DOI: https://doi.org/10.1175/1520-0426(2002)019<1087:MOSSDW>2.0.CO;2
  8. Marom, M., Shemer, L. and Thornton, E. B., 1991. Energy density directional spectra of a nearshore wave field measured by interferometric synthetic aperture radar. J. Geophys. Res., 96(C12), pp. 22125–22134. DOI: https://doi.org/10.1029/91JC02222
  9. Hwang, P. A., Toporkov, J. V., Sletten, M. A. and Menk, S. P., 2012. Mapping surface currents and waves with interferometric synthetic aperture radar in coastal waters: Observations of wave breaking in swell-dominant conditions. J. Phys. Oceanogr. 43(3), pp. 563–582. DOI: https://doi.org/10.1175/JPO-D-12-0128.1
  10. Field Research Facility [online]. Available at: http://www.frf.usace.army.mil
  11. How are significant wave height, dominant period, average period, and wave steepness calculated [online]. Available at:  http://www.ndbc.noaa.gov/wavecalc.shtml
  12. Lyzenga, D. R. and Shuchman, R. A., 1983. Analysis of scatterer motion effects in Marsen X-band SAR imagery. J. Geophys. Res. 88(C14), pp. 9769–9775. DOI: https://doi.org/10.1029/JC088iC14p09769
  13. Schwartz, M. L. ed., 2005. Encyclopedia of Coastal Science. Springer. DOI: https://doi.org/10.1007/1-4020-3880-1
  14. Keydel, W., 2007. Normal and Differential SAR Interferometry. In: Radar Polarimetry and Interferometry (pp. 2-1 – 2-40). Educational Notes RTO-EN-SET-081bis, Paper 2. Neuilly-sur-Seine, France: RTO. Available at: http://www.rto.nato.int/abstracts.asp
  15. National Data Buoy Center NOAA [online]. Available at: http://www.ndbc.noaa.gov