• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

MICROWAVE LOSS IN LOW-ABSORBING DIAMOND-LIKE MATERIALS AT 1 K < T < 300 K. THE PHENOMENOLOGICAL SIMULATION

Golovashchenko, RV, Derkach, VN, Tarapov, SI
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: roman.golovashchenko@ire.kharkov.ua

https://doi.org/10.15407/rej2015.04.031
Language: russian
Abstract: 

The development and manufacture of new materials for micro- and nanoelectronics are inextricably linked with the problem of studying the electromagnetic energy loss mechanisms in these materials in the gigahertz band. The reasonable technique of search for these mechanisms is the analysis of the temperature dependence of the loss tangent of such materials at temperatures from cryogenic ones to room ones. In this paper, the phenomenological simulation of loss in low-absorbing materials having a diamond-like crystal lattice is performed on the basis of experimental data. The experiments were carried out in the frequency range 60…120 GHz and at temperatures 1…300 K. The technique of measuring energy characteristics of the whispering gallery mode disk dielectric resonator is applied. As a result, the roles of main loss mechanisms for the materials under research are clarified and the values of basic physical parameters of materials are determined.

Keywords: loss mechanisms, low temperatures, low-absorbing diamond-like materials, microwave waveband

Manuscript submitted  10.09.2015 г.
PACS     77.22.-d; 77.22.Gm; 41.20.Jb; 77.84.-s
Radiofiz. elektron. 2015, 20(4): 31-38
Full text  (PDF)

References: 
  1. Zuccaro, C., Winter, M., Klein, N. and Urban, K., 1997. Microwave absorption in single crystals of lanthanum aluminate. J. Appl. Phys., 82(11), pp. 5695–5704.
  2. Krupka, J., Hartnett, J. G. and Piersa, M., 2011. Permittivity and microwave absorption of semi–insulating InP at microwave frequencies. Appl. Phys. Lett., 98(11), pp. 112112 (3 p.).
  3. Molchanov, V. I. and Poplavko, Yu. M., 2010. Fundamentals of microwave electronics. Kiev: NTUU “KPI” Publ. (in Russian).
  4. Gurevich, V. L., 1980. Kinetics of phonon systems. Moscow: Nauka Publ. (in Russian).
  5. Gurevich, V. L. and Tagantsev, A. K., 1991. Intrinsic dielectric loss in crystals. Adv. Phys., 40(6), pp. 719–767.
  6. Tagantsev, A., 1999. Mechanisms of dielectric loss in microwave materials. Mat. Res. Soc. Proc., 603, pp. 221–232.
  7. Garin, B. M., 1994. Disorder–induced one–phonon absorption of millimeter and submillimeter waves. Proc. SPIE., 2211, pp. 606–614.
  8. Poplavko, Yu. M., 1980. Dielectric Physics. Kiev: Vyshcha shkola Publ. (in Ukrainian).
  9. Garin, B. M., 2004. Lower loss limits at millimeter and terahertz ranges. In: Infrared and Millimeter Waves, Conf. Digest of the 2004 Joint 29th Int. Conf on 2004 and 12th Int. Conf. on Terahertz Electronics, 2004. Williamsburg, USA, 27 Sept.-1 Oct. 2004, pp. 393–394.
  10. Frohlich, H., 1960. Theory of dielectrics. Translated from English by G. I. Skanavi. Moscow: Inostrannaya literatura Publ. (in Russian)
  11. Gill, F., Murrey, U. and Rite, M., 1985. Practical optimization. Translated from English and ed. by А. А. Petrov. Moscow: Mir Publ. (in Russian).
  12. Kirichenko, А. Ya., Prokopenko, Y. V., Filippov, Yu. F, and Cherpak, N. T., 2008. Quasi-optical solid-state resonators. Kiev: Naukova Dumka Publ. (in Ukrainian).
  13. Krupka, J., Derzakowski, K., Abramowicz, A., Tobar, M. E., Geyer, R. G., 1999. Use of whispering-gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials. IEEE Trans. Microwave Theory Tech., 47(6), pp. 752–759.
  14. Derkach, V. N., Golovashchenko, R. V., Goroshko, E. V. et al., 2005. Measurement of material dielectric parameters at low temperatures in the millimeter wavelength range. Collected scientific papers of FMI NAS of Ukraine. Series: Physical methods and facilities for material and product quality. L’viv, 10, pp. 149–158 (in Ukrainian).
  15. Derkach, V. N., Bagmut, T. V., Golovashchenko, Р. V., Korzh, V. G., Nedukh, S. V., Tarapov, S. I., 2008. Disk dielectric resonator for low-temperature magnetoresonance investigations in the millimeter and submillimeter wave range. In: V. M. Yakovenko, ed. 2008. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 12(2), pp. 421–425 (in Russian).
  16. Golovashchenko, R. V., 2011. System for excitation of the disc dielectric resonator in the cryodielectrometer. Radiofizika i elektronika., 1(15)(2), pp. 27–31 (in Russian).
  17. Cryomagnetic radiospectroscopic complex of millimeter wavelength. Experimental Complex – National Propriety of Ukraine [online]. Avialable at: http://www.ire.kharkov.ua/Radio-spectroscopy/1.htm
  18. Garin, B. M., Kopnin, A. P., Meriakry, V. V., Nikitin, I. P., Parkhomenko, M. P., 1991. On dielectrics with a minimum loss in the millimeter and submillimeter ranges. In: First Ukrainian Symp. “Physics and Technique of mm and submm radiowaves”, Kharkov, Ukraine, 15–17 Oct. 1991. 1, pp. 86–87 (in Russian).
  19. Garin, B. M., Kopnin, A. N., Parkhomenko, M. P., Izyneev, A. A., Sablikov, V. A., 1994. Technique for production of silicon with ultra-low loss in the millimeter and submillimeter wave range. Pis’ma Zh. Tekh. Fiz., 20(21), pp. 56–59 (in Russian).
  20. Andreev, B. A., Kotereva, T. V., Parshin, V. V., Shmagin, V. B., Heidinger R. V., 1997. Silicon with a minimum dielectric loss in the millimeter wavelength range. Neorganicheskiye materially, 33(11), pp. 1301–1304 (in Russian).
  21. Garin, B. M., Parshin, V. V., Ralchenko, V. G., Konov, V. I., Kopnin, A. N., Mazur, A. B., Parkhomenko, M. P., Chigryay, E. E., 1999. On the loss in diamond in the millimeter range. Pis’ma Zh. Tekh. Fiz., 25(7), pp. 85–89 (in Russian).
  22. Balmer, R. S., Brandon, J. R., Clewes, S. L., Dhillon, H. K., Dodson, J. M., Friel, I., Inglis, P. N., Madgwick, T. D., Markham, M. L., Mollart, T. P., Perkins, N., Scarsbrook, G. A., Twitchen, D. J., Whitehead, A. J., Wilman, J. J., Woollard, S. M., 2009. Chemical vapor deposition of synthetic diamond: materials, technology and applications. J. Phys. Condens. Matter., 21(36), pp. 364221 (51 p.).
  23. Thumm, M., 2012. State-of-the-art of high power gyro-devices and free electron masers. Karlsruhe Institute of Technology. Kit Scientific Reports 7641. KIT Scientific Publ. [online]. Avialable at: http://www.ubka.uni–karlsruhe.de
  24. Shalimova, K. B., 1985. Semiconductor Physics. Moscow: Energoatomizdat Publ. (in Russian).
  25. Krupka, J., Breeze, J., Centeno, A. and Alford, N., 2006. Measurements of permittivity, dielectric loss tangent, and resistivity of float-zone silicon at microwave frequencies. IEEE Trans. Microwave Theory Tech., 54(11), pp. 3995–4000.
  26. Parshin, V. V., Heidinger, R., Andreev, B. A., Gusev, A. V., Shmagin, V. B., 1995. Silicon as an advanced window material for high power gyrotrons. Int. J. Infrared and Millimeter Waves, 16(5), pp. 863–877.
  27. Zeeger, K., 1977. Semiconductor Physics. Translated from English and ed. by Yu. K. Pozhela. Moscow: Mir Publ. (in Russian).
  28. Milnes, А., 1977. Deep level impurities in semiconductors. Translated from English and ed. by M. K. Sheynkman. Moscow: Mir Publ. (in Russian).
  29. Poplavko, Yu. M. and Kazmirenko, V. A., 2013. Parameters of microwave semiconductor. In: 23rd Int. Crimean Conf. “Microwave technique and telecommunication technologies” (CriMiCo’2013): proc. Sevastopol, Ukraine, 8–14 Sept. 2013, pp. 750–751.
  30. Krupka, J., Nguyen, D. and Mazierska, J., 2011. Microwave and RF methods of contactless mapping of the sheet resistance and the complex permittivity of conductive materials and semiconductors. Meas. Sci. Technol. 22(8), pp. 085703.
  31. Ralchenko, V. G., Kononov, V. I., Parshin, V. V., Garin, B. M., Khaydinger, R., 2003. Polycrystalline CVD-diamond – new dielectric material for microwave electronics. In: 13th Int. Crimean Conf. “Microwave technique and telecommunication technologies” (CryMiCo’2003): proc. Sevastopol, Ukraine, 8–12 Sept. 2013, pp. 547–548 (in Russian).
  32. Floch, L., Bara, R., Hartnett, J. G., Tobar, M. E., Mouneyrac, D., D. Passerieux, Cros, D., Krupka, J., Goy, P. and Caroopen, S., 2011. Electromagnetic properties of polycrystalline diamond from 35 K to room temperature and microwave to terahertz frequencies. J. Appl. Phys., 109(9), pp. 094103(6 p.)
  33. Gurevich, V. L. and Tagantsev, A. K., 1986. On intrinsic dielectric loss in crystals. Low temperatures. J. Eksp. Teor. Fiz., 91(7), pp. 245–261 (in Russian).
  34. Gurevich, V. L. and Tagantsev, A. K., 1990. On intrinsic dielectric loss in crystals. High temperatures. J. Eksp. Teor. Fiz., 97(4), pp. 1335–1345 (in Russian).
  35. Tropf. W. J., Thomas, M. E. and Harris T. J., 1995. Properties of Crystals and Glasses. Handbook of Optics. 2(33). [pdf]. McGraw-Hill. Avialable at: http://photonics. intec.ugent.be/education/ivpv/res_handbook/ v2ch33.pdf
  36. Jung, H. S., Yang, W. I., Cho, M. S. Joo, K. N., Lee, S. Y., 2014. Microwave losses of undoped n-type silicon and undoped 4H-SiC single crystals at cryogenic temperatures. Electron. Mater. Lett., 10(3), pp. 541–549.
  37. Shklovsky, B. I. and Efros, A. L., 1979. Electronic properties of doped semiconductors. Moscow: Nauka Publ. (in Russian).
  38. Krupka, J., Mouneyrac, D., Hartnett, J. G. and Tobar, M. E., 2008. Use of whispering-gallery modes and quasi-TE0np modes for broadband characterization of bulk gallium arsenide and gallium phosphide samples. IEEE Trans. Microwave Theory Tech., 56(5), pp. 1201–1206.
  39. Ilchenko, V. S., 1989. Intrinsic dielectric loss alpha-Al2O3 at 300 – 1000 K. Fizika tverdogo tela, 31(7), pp. 135–138 (in Russian).
  40. Parshin, V. V., Garin, B. M., Myasnikova, S. E. and Orlenekov, A. V., 2004. Dielectric loss in CVD-diamonds in the millimeter wavelength range at 300-900 K. Izv. Vyssh. Uchebn. Zaved. Radiofiz. 47(12), pp. 1087–1095 (in Russian).
  41. Garin, B. M., Polyakov, V. I., Rukovishnikov, A. I., Khomich, A. V., Parshin, V. V., Serov, E. A., Jia, Ch. Ch., Lu, F. X., Tang, W. Z., 2014. Dielectric loss at millimeter range and temperatures 300 – 950 K, and electrophysical properties in diamonds grown by the arc plasma jet technology. PIERS 2014. [online]. 25-28 Aug. Guangzhou, China, pp. 2096–2099. Avialable at: http://piers.org/piersproceedings/piers2014 Guangzhou.php