• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

PLASMA-BEAM SUPERHETERODYNE FREE ELECTRON LASER WITH H-UBITRON PUMP WITH NON-AXIAL INJECTION OF ELECTRON BEAM

Lysenko, AV, Oleksiienko, GA
Organization: 

Sumy State University
2, Rymskogo-Korsakova st., 40007 Sumy, Ukraine
E-mail: lysenko_@ukr.net

https://doi.org/10.15407/rej2016.01.048
Language: Russian
Abstract: 

A cubic-nonlinear theory of a plasma-beam superheterodyne free electron laser (PBSFEL) with H-ubitron pump and non-axial injection of electron beam has been constructed. In the investigated system the parametric resonance interaction between a space-charge wave and cyclotron wave is realized. The signal wave saturation levels have been determined. It has been found that the mode using a slow cyclotron wave has the highest saturation level among all possible operation modes of the PBSFEL with H-ubitron pump. The injection angle of the beam at which the electromagnetic signal gain is maximal has been determined. It has been shown that PBSFELs using slow cyclotron waves are able to create a powerful coherent electromagnetic radiation in the millimeter wavelength range.

Keywords: beam-plasma instability, parametric resonance, superheterodyne free electron laser

Manuscript submitted  11.01.2016
PACS     41.60.Cr; 52.59.Ye
Radiofiz. elektron. 2016, 21(1): 48-54
Full text (PDF)

References: 
  1. Kulish, V. V., 2011. Hierarchic electrodynamics and free electron lasers. London, New York: Boca Raton, CRC Press. DOI: https://doi.org/10.1201/b11247
  2. Kuzelev, M. V., Rukhadze, A. A. and Strelkov, P. S., 2002. Plasma relativistic microwave electronics. Moscow: Bauman MSTU Publ. (in Russian).
  3. Tsimring, S. E., 2007. Electron beams and microwave vacuum electronics. Hoboken, New Jersey: Wiley.
  4. Booske, J. H., Dobbs, R. J., Joye, C. D., Kory, C. L., Neil, G. R., Park, G.-S., Park, J. and Temkin, R. J., 2011. Vacuum electronic high power terahertz sources. IEEE Trans. Terahertz Sci. Technol., 1(1), pp. 54-75. DOI: https://doi.org/10.1109/TTHZ.2011.2151610
  5. Kulish, V. V., Lysenko, A. V. and Brusnik, A. Ju., 2012. Hierarchical asymptotic methods in the theory of cluster free electron lasers. J. Infrared Millim. Terahertz Waves, 33(2), pp. 149-173. DOI: https://doi.org/10.1007/s10762-011-9860-z
  6. Kulish, V. V., Kuleshov, S. A. and Lysenko, A. V., 1993. Nonlinear self-consistent theory of superheterodyne and parametric electron laser. J. Infrared Millim. Terahertz Waves, 14(3), pp. 451-567. DOI: https://doi.org/10.1007/BF02209264
  7. Kulish, V. V., Kuleshov, S. A. and Lysenko, A. V., 1994. Nonlinear self-consistent theory of two-stream superheterodyne free electron lasers. J. Infrared Millim. Terahertz Waves, 15(1), pp. 77-120. DOI: https://doi.org/10.1007/BF02265878
  8. Kulish, V. V., Lysenko, A. V. and Koval, V. V., 2009. On the theory of a plasma-beam superheterodyne free electron laser with H-ubitron pumping. Tech. Phys. Lett., 35(8), pp. 696-699. DOI: https://doi.org/10.1134/S1063785009080045
  9. Kulish, V. V., Lysenko, A. V., and Koval, V. V., 2010. Сubic-nonlinear theory of a plasma-beam superheterodyne free electron laser with H-ubitron pumping. Telecommunications and Radio Engineering, 69(20), pp. 1859-1869.
  10. Mohsenpour, T. and Amri, H. E., 2013. The gain equation of a helical wiggler free electron laser with ion-channel guiding and/or an axial magnetic field. Chin. Phys. Lett., 30(3), pp. 34102-34105. DOI: https://doi.org/10.1088/0256-307X/30/3/034102
  11. Sprangle, P., Granatstein, V. L. and Baker, L., 1975. Stimulated collective scattering from a magnetized relativistic electron beam. Phys. Rev. A, 12(4), pp. 1697-1701. DOI: https://doi.org/10.1103/PhysRevA.12.1697
  12. Miroshnichenko, V. I., 1980. Forced coherent scattering of electromagnetic waves by a relativistic beam of oscillators. Radiophys. Quant El., 23(3), pp. 252-259. DOI: https://doi.org/10.1007/BF01035437
  13. Bekefi, G., 1992. Double-stream cyclotron maser. Appl. Phys., 71(9), pp. 4128-4131. DOI: https://doi.org/10.1063/1.350842
  14. Saviz, S., 2014. The effect of beam and plasma parameters on the four modes of plasma-loaded traveling-wave tube with tape helix. J. Theor. Appl. Phys., 8(3), pp. 1-35. DOI: https://doi.org/10.1007/s40094-014-0135-7
  15. Ginzburg, N. S. and Peskov, N. Yu., 2013. Nonlinear theory of a free electron laser with a helical wiggler and an axial guide magnetic field. Phys. Rev. ST Accel. Beams, 16(9), pp. 090701(18 p.).
  16. Mohsenpour, T. and Mehrabi, N., 2013. Instability of wave modes in a two-stream free-electron laser with a helical wiggler and an axial magnetic field. Phys. Plasmas, 20(8), pp. 082133 (7 р.).
  17. Saviz, S., Rezaei, Z. and Aghamir, F. M., 2012. Gain enhancement in two-stream free electron laser with a planar wiggler and an axial guide magnetic field. Chin. Phys. B, 21(9), pp. 094103 (4 p.).
  18. Liu, W., Yang, Z., Liang, Z., 2006. Instability of two-stream free-electron laser with an axial guiding magnetic field. J. Infrared Millim. Terahertz Waves, 27(8), pp. 1073-1085. DOI: https://doi.org/10.1007/s10762-006-9095-6
  19. Meydanloo, S. and Saviz, S., 2014. Dispersion relation and growth rate in two-stream thermal plasma-loaded free-electron laser with helical wiggler. J. Theor. Appl. Phys., 9(1), pp. 39-43. DOI: https://doi.org/10.1007/s40094-014-0158-0
  20. Kulish, V. V., Lysenko, A. V., Oleksiienko, G. A., Koval, V. V. and Rombovsky, M. Yu., 2014. Plasma-beam superheterodyne FELs with helical electron beams. Prikladnaja Fizika, 5, pp. 24-28 (in Russian).
  21. Lysenko, A. V., Alekseyenko, G. A. and Fedenko, M. O., 2015. Application of an upgraded method of averaged characteristics to the problems of theory of plasma-beam superheterodyne free electron laser. Zh. Nano- Elektron. Fiz., 7(4), pp. 04083(8 p.) (in Russian).