• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

SCATTERING INDICATRIX OF SNOW CRYSTALS

Veselovska, G, Khlopov, G
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: veselovskaya3@ukr.net

https://doi.org/10.15407/rej2016.02.015
Language: Russian
Abstract: 

Radar methods of investigation of clouds and precipitation are the most effective methods of remote sensing of the atmosphere. The advantages of radar techniques are the abilities to measure quickly the characteristics of precipitation over large areas. In the context of the turbulent medium the particles may be at a different angle relatively to the incident field, so in the paper there was an attempt to study the scattering indicatrix of snow crystals (dependence of the radar cross-section (RCS) on the incidence angle of the electromagnetic wave), which allowed to evaluate the variability of the RCS of snow crystals at the variations of the elevation angle of the radar antenna. For the numerical simulation of the scattering properties of the snow crystals we used two types of particles at various angles of observation, at that in the paper we consider two azimuthal angles of incidence of electromagnetic field in a wide frequency range.

Keywords: scattering indicatrix, snow crystal

Manuscript submitted 22.03.2016
PACS 07.07.Vx
Radiofiz. elektron. 2016, 21(2): 15-21
Full text (PDF)

References: 
  1. Borovikov, А. M., Kostarev, V. V., Mazin, I. P. Chernikov, А. А., 1967. Radar measurements of precipitation. Moscow: Gidrometeoizdat Publ. (in Russian).
  2. Atlas, D., 1990. Radar in Meteorology. 1st ed. Boston: Publ. Amer. Meteor. Soc. DOI: https://doi.org/10.1007/978-1-935704-15-7
  3. Gunn, K. L. S. and Marshall, J. S., 1958. The distribution with size of aggregate snowflakes. J. Meteor. 15(10), pp. 452–461. DOI: https://doi.org/10.1175/1520-0469(1958)015<0452:TDWSOA>2.0.CO;2
  4. Sekhon, R. S. and Srivastava, R. C., 1970. Snow size spectra and radar reflectivity. J. Atmos. Sci. 27(3), pp. 299–307. DOI: https://doi.org/10.1175/1520-0469(1970)027<0299:SSSARR>2.0.CO;2
  5. Passarelli, R. E., 1978. Theoretical explanation for Z-R relationships in snow. In: Preprints 18th Conf. Radar Meteor. Atlanta, GA, 28–31 Mar. 1978. Boston: Publ. Amer. Meteor. Soc., pp. 332–335.
  6. Ohtake, T. and Henmi, T., (1970), Radar reflectivity of aggregated snowflakes. In: Preprints 14th Conf. Radar Meteor. Tacson, AZ, 17–20 Nov. 1970. Boston: Publ. Amer. Meteor. Soc., pp. 209–210.
  7. Veselovska, G. B., 2015. Remote sensing of snowfalls. Review. Radiofizika i elektronika, 6(20)(3), pp. 38–48.
  8. Fujiyoshi, Y., Endoh, T., Yamada, T., Tsuboki, K., Tachibana, Y. and Wakahama, G., 1990. Determination of a Z-R relationship for snowfall using a radar and high sensitivity snow gauges. J. Appl. Meteorol. 29(2), pp. 147–152. DOI: https://doi.org/10.1175/1520-0450(1990)029<0147:DOARFS>2.0.CO;2
  9. Boucher, R. J. and Wieler, J. G., 1985. Radar determination of snowfall rate and accumulation. J. Climate Appl. Meteor. 24(1), pp. 68–73. DOI: https://doi.org/10.1175/1520-0450(1985)024<0068:RDOSRA>2.0.CO;2
  10. Pruppacher, H. R. and Klett, J. D., 1997. Microphysics of Clouds and Precipitation. Kluwer Academic Publ., – 954 р.
  11. Sasyo, Y., 1997. The collection efficiency of simulated snow particles for water droplets (II)-on the oscillatory angular motion of the snowflake. Pap. Meteorol. Geophys., 28(4), pp. 159–168. DOI: https://doi.org/10.2467/mripapers1950.28.4_159
  12. Harrington, R. F., 1993. Field Computation by Moment Methods. Piscataway: Wiley-IEEE Press. DOI: https://doi.org/10.1109/9780470544631
  13. Gabelya, N. P., Istrashkin, А. D., Muravyov, Y. K. and Serkov, V. P., 1963 Antennas. Pt. 1., Leningrad: Voennaya Krasnoznamenskaya akademiya svyazi Publ. (in Russian).
  14. Mishchenko, M. I. and Travis, L. D., 1998. Capabilities and limitations of a current Fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60(3), pp. 309–324. DOI: https://doi.org/10.1016/S0022-4073(98)00008-9