• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

SIMULATION AND EXPERIMENTAL RESEARCH ON CW CLINOTRON IN FRQUENCY RANGE 125…135 GHZ

Kovshov, YS, Kishko, SA, Ponomarenko, SS, Vlasenko, SA, Novikova-Korotun, YS, Zavertanniy, VV, Kuleshov, AN
Organization: 

1O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
Е-mail: jeanalexkh@gmail.com

2V. N. Karazin Kharkiv National University
4 Svobody Sq., Kharkiv, 61022, Ukraine

https://doi.org/10.15407/rej2016.02.045
Language: Russian
Abstract: 

The development of compact oscillators of electromagnetic radiation capable of providing the output power higher than several Watt in millimeter and sub-millimeter ranges is an actual task for a large number of practical applications, in particular, to enhance the sensitivity of DNP NMR spectroscopy. The simulation of 130 GHz CW Clinotron was carried out on basis of experimental results of the earlier developed CW Clinotrons in 2mm wavelength range. Basing on the analysis of oscillator operation characteristics, the space charge dependence on frequency, Pierce parameter and the system electrical length were determined. The obtained results were used in the simulation of grating and in further simulation of operation parameters of clinotron tubes. Basing on simulation results, the clinotrons with homogeneous and four-stage grating were designed. The output power more than one Watt in CW clinotron with homogeneous grating in the frequency range 125…135 GHz was experimentally obtained. Start current and required focusing magnetic field were obtained in the experimental test in electromagnet. The experimental test also shows the close fit between simulation results and experimental data. The proposed methodic can be used in the simulation of CW clinotrons in both millimeter and sub-millimeter ranges.

Keywords: beam-wave interaction, clinotron, coupling impedance, dispersion, multi-stage grating, optimal phase shift

Manuscript submitted 10.042016
PACS 84.40.Fe
Radiofiz. elektron. 2016, 21(2): 45-52
Full text (PDF)

References: 
  1. Gorshunov, B., Volkov, A., Spektor, I., Prokhorov, A., Mukhin, A., Dressel, M., Uchida, S. and Loidl, A., 2005. Terahertz BWO-spectrosopy. Int. J. Infrared Millimeter Waves, 26(9), pp. 1217–1240. DOI: https://doi.org/10.1007/s10762-005-7600-y
  2. Markets, T. H., 2015. Availability, notice, and technical performance of terahertz systems: historic development, present, and trends. Int. J. Infrared Millimeter Waves, 36(3), pp. 235–254. DOI: https://doi.org/10.1007/s10762-014-0124-6
  3. Booske, J. H., Dobbs, R. J., Joye, C. D., Kory, C. L., Neil, G. R., Park, G.-S., Park, J. and Temkin, R. J., 2011. Vacuum electronic high power terahertz sources. IEEE Trans. Terahertz Sci. Technol., 1(1), pp. 54–75. DOI: https://doi.org/10.1109/TTHZ.2011.2151610
  4. Ponomarenko, S. S., Kishko, S. A., Zavertanniy, V. V.,  Khutoryan, E. M., Lopatin, I. V., Yefimov, B. P., Kuleshov, A. N., 2013. 400 GHz Continuous-Wave klynotron Oscillator. IEEE Trans. Plasma Sci., 41(1), pp. 82–86. DOI: https://doi.org/10.1109/TPS.2012.2226247
  5. Dayton, J. A., Mearini, G. T. and Kory, Jr. C. L., 2006. Backward Wave Oscillator Development at 300 and 650 GHz. In: Proc. 7th IEEE Int. Vacuum Electronics Conf. (IVEC-2006). Monterey, California, 25–27 Apr. 2006, pp. 423–424. DOI: https://doi.org/10.1109/IVELEC.2006.1666363
  6. Mineo, M. and Paoloni, C., 2010. Corrugated Rectangular Waveguide Tunable Backward Wave Oscillator for Terahertz Applications. IEEE Trans. Electron. Devices, 57(6), pp. 1481–1484. DOI: https://doi.org/10.1109/TED.2010.2045678
  7. Meerov, I. B., Bastrakov, S. I., Surmin, I. A., Gonoskov, A. A., Efimenko, E. S., Bashinov, A. V., Korzhimanov, A. V., Larin, A. V., Murav'ev, A. A., Rozanov, A. I., Cavichev, M. R., 2015. Three-dimensional plasma simulation by the particle-in-cell method with Intel Xeon Phi: optimization of computations and case study. Vychislitel'nye metody i programmirovanie, 16, pp. 495–508 (in Russian).
  8. Weinstein, L. A. and Solntsev, V. A., 1973. Lectures on SHF electronics. Moscow: Sov. Radio Publ. (in Russian).
  9. Shevchik, V. N. and Trubetskov, D. I., 1975. Electronics of back-wave tubes. Saratov: Saratov. Univer. Publ. (in Russian).
  10. Gerschenson, Ye. M., Golant, M. B., Negirev, A. A., Savel’ev, V. S., 1985. Millimeter and submillimeter back wave tubes. Moscow: Radio and Svaz’ Publ. (in Russian).
  11. Levin, G. Ya., Borodkin, A. I., Kirichenko, A. Ya., Usikov, A. Ya., Churilova, S. A., 1992. Klynotron. Kiev: Naukova Dumka Publ. (in Russian).
  12. Mil’cho, M. V., 2007. The interaction of electrons with transverse and longitudinal components of the high-frequency in a klynotron-type oscillator. In: V. M. Yakovenko, ed., 2007. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 12(spec. iss.), pp. 59–70 (in Russian).
  13. Altschuler, Yu. G., Tatarenko, A. S., 1963. Low-power back wave tubes. Moscow: Sov. Radio Publ. (in Russian).
  14. Lebedev, I. V., 1972. Microwave engineering and devices. Vol. 1. Moscow: Vyssh. Shkola Publ. (in Russian).
  15. Kharchenko, M. A., 2008. Correlation analysis: manual for higher schools. Voronezh, Russia: Voronezh. Univer. Publ. (in Russian).
  16. Yefimov, B. P., 2007. Multiwave millimeter-wave band resonance klynotron. In: V. M. Yakovenko, ed., 2007. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 12(spec. iss.), pp. 71–80 (in Russian).
  17. Pishko, O. F., Chumak, V. G. and Churilova, S. A., 2007. Electromagnetic characteristics of klynotron’s output unit. In: V. M. Yakovenko, ed., 2007. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 12(spec. iss.), pp.130–133 (in Russian).
  18. Ginsburg, N. S., Kuznetsov, S. P. and Fedoseyeva, T. N., 1979. Theory of transient processes in relativistic BWT. Izv. Vyssh. Ucheb. Zaved. Radiofiz., 21(7), pp. 1978–1052 (in Russian).
  19. Borodkin, A. I., Kirichenko, A. Ya. and Levin, G., 1961. On the improvement of interaction between an electron beam and surface wave field in a klynotron under weakly inhomogeneous magnetic field. In: A. Ya. Usikov, ed. 1961. Trudy In-ta Radiofiziki i Elektroniki AN UkrSSR. Kharkov: IRE AN UkrSSR Publ., 9, pp. 273–277 (in Russian).
  20. Levush, B., Antonsen, T. M., Bromborsky, A., Lou, W.-R., Carmel, Y., 1992. Theory of relativistic backward wave oscillator with end reflections. IEEE Trans. Plasma Sci., 20(3), pp. 263–280. DOI: https://doi.org/10.1109/27.142828
  21. Sattorov, M., Khutoryan, E.,  Lukin, K., Kwon, O.-J., Min, S.-H., Bhattacharya, R., Baek, I.-K., Kim, S., Yi, M., So, J., Park, G.-S., 2015. Automodulation Processes in Klynotrons with Low-Focusing Magnetic Field. IEEE Trans. Electron. Devices, 62(5), pp. 1617–1621. DOI: https://doi.org/10.1109/TED.2015.2409292
  22. Khutoryan, E., Sattorov, M., Lukin, K., Kwon, O.-J., Min, S.-H., Bhattacharya, R., Baek, I.-K., Kim, S., Yi, M., So, J., Park, G.-S., 2015. Theory of Multimode Resonant Backward-Wave Oscillator With an Inclined Electron Beam. IEEE Trans. Electron. Devices, 62(5), pp. 1628–1634. DOI: https://doi.org/10.1109/TED.2015.2411680
  23. Khutoryan, E. M., Ponomarenko, S. S., Kishko, S. A., Lukin K. A., Kuleshov, A. N., Efimov, B. P., 2013. Oscillations in O-type source while exciting a volume-surface wave in a resonator with a periodic inhomogeneous grating. Izv. Vyssh. Ucheb. Zaved. Prikladnaya Nelineynaya Dinamika, 21(2), pp. 9–19 (in Russian).
  24. Ponomarenko, S. S., Kishko, S. A., Khutoryan, E. M., Kuleshov, A. N., Yefimov, B. P., 2014. Development of 94 GHz BWO – clynotron with 3-stage grating. Telecommunications and Radio Engineering, 73(3), pp. 271–281. DOI: https://doi.org/10.1615/TelecomRadEng.v73.i3.60
  25. Lysenko, Ye. Ye., Pishko, O. F. and Churilova, S. A., 1999. Experimental research of a klynotron with a distributed quasi-optical energy output. Radiofizika i Radioastronomiya, 4(1), pp. 13–20 (in Russian).
  26. Borodkin, A. I., Busik, L. M. and Lysenko, Ye. Ye., 1980. Research on the multi-stage slow-wave grating structures. Preprint no. 151. Kharkov: In-t Radiofiziki i Elektriniki (IRE) AN UkrSSR Publ. (in Russian).
  27. Kovshov, Yu. S., Kishko, S. A., Ponomarenko, S. S. and Kuleshov, A. N., 2015. Sub-THz CW Clynotrons with Multi-Stage Gratings. In: 1st Int. Young Scientists Forum on Appl. Phys. (YSF-2015). Dnipropetrovsk, Ukraine, Sept. 29 – Oct. 2. Forum Proc. CD (ISBN: 978-1-4673-6976-3), MTE-2, 4 p.
  28. Nusinovich, G. S. and Bliokh, Yu. P., 2000. Mode Interaction in Backward-Wave Oscillators with Strong End. Reflections. Phys. Plasmas. 7(4), pp. 1294–1301. DOI: https://doi.org/10.1063/1.873940
  29. Yefimov, B. P., Kirichenko, A. Ya. and Buzhinski, A. P., 1967. Experimental research on the relation between reflections and frequency characteristics of millimeter BWT. In: A. Ya. Usikov, ed. 1961. Trudy In-ta Radiofiziki i Elektroniki AN UkrSSR. Kharkov: IRE AN UkrSSR Publ., 15, pp. 130–133 (in Russian).