• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)


Velichko, EA, Nickolaenko, AP

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: elena.vel80@gmail.comv

Language: Russian

Cylindrical sensors of noble metals exploiting the plasmon surface resonance are widely used in the bio-medical research and environmental studies and studying their characteristics in different wavelength bands is an actual task. We analyze scattering of a plane H-polarized electromagnetic wave in the visible range of wavelengths by a silver nanocylinder with a concentric dielectric coating. The arising plasmon resonances are treated using both the conventional classic presentation of the spatial distribution of the field amplitude nearby the object and by the spatial distribution of the Umov-Poynting vector. We demonstrate that plasmon description by the Umov-Poynting vector has obvious advantages, as the standing and traveling waves become clearly visible while the boundaries of the objects are evident in the spatial distribution. A paradox influence of the dielectric constant of the coating on the type of the plasmon resonance and spatial field distribution is illustrated.

Keywords: electromagnetic wave scattering, plasmon resonance, Umov-Poynting vector

Manuscript submitted 24.03.2016
PACS 41.20.-q; 07.57.-c
Radiofiz. elektron. 2016, 21(2): 79-86
Full text (PDF)

  1. Martin, O. J. F., 2003. Plasmon resonances in nano-wires with a non-regular cross-section. In: J. Tominaga and D. P. Tsai eds., 2003. Optical Nanotechnologies. The Manipulation of Surface and Local Plasmons. Topics Appl. Phys. Berlin: Springer, 88, pp. 183–210.
  2. Fredkin, D. R. and Mayergoyz, I., 2003. Resonant behavior of dielectric objects (electrostatic resonances). Phys. Rev. Lett., 91(25), pp. 3902–3905. DOI: https://doi.org/10.1103/PhysRevLett.91.253902
  3. Schroster, U. and Dereus, A., 2001. Surface plasmon-polaritons on metal cylinders with dielectric core. Phys. Rev. B, 64(12), pp. 125420 (10 p.).
  4. McPhillips, J., Murphy, A., Jonsson, M. P., Hendren, W. R., Atkinson, R., Höök, F., Zayats, A. V. and Pollard, R. J., 2010. High-performance biosensing using arrays of plasmonic Nano-tubes. ACS Nano, 4(4), pp. 2210–2216. DOI: https://doi.org/10.1021/nn9015828
  5. Murphy, A., Sonnefraud, Y., Krasavin, A. V., Ginzburg, P., Morgan, F., McPhillips, J., Wurtz, G., Maier, S. A., Zayats, A. V. and Pollard, R., 2013. Fabrication and optical properties of large-scale arrays of gold Nano-cavities based on rod-in-a-tube coaxial. Appl. Phys. Lett., 102(10), pp. 103103 (5 p.).
  6. Velichko, E. A. and Nosich, A. I., 2013. Refractive-index sensitivities of hybrid surface-plasmon resonances for a core-shell circular silver Nano-tube sensor. Opt. Lett., 38(23), pp. 4978–4981. DOI: https://doi.org/10.1364/OL.38.004978
  7. Velichko, E. A., 2014. Numerical modeling of plasmon-assisted Nano-tube sensors of the host-medium refractive index. In: IEEE Int. Conf. on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO2014): proc. Pavia, Italy, 14–16 May 2014. Session TH1.
  8. Velichko, E. A. and Nickolaenko, A. P., 2015. Nanocylinders made of noble metals as scatterers of plane electromagnetic wave. Radiofizika i elektronika, 6(20)(4), pp. 62-69 (in Russian).
  9. Johnson, P. B. and Christy, R. W., 1972. Optical constants of the noble metals. Phys. Rev. B, 6(12), pp. 4370–4378. DOI: https://doi.org/10.1103/PhysRevB.6.4370
  10. Van de Hulst, H.C., 1961. Light scattering by small particles. Translated from English and ed. By V. V. Sobolev. Moscow: Inostrannya Literatura Publ. (in Russian).
  11. Nikolsky, V. V. and Nikolsky, T. I., 1989. Electrodymanics and radio wave propagation: textbook for higher education facilities. Moscow: Nauka Publ. (in Russian).