• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

ABOUT THE IMPACT OF COMMUNICATION CHANNEL ON GNSS RADIOSIGNALS PROPAGATION IN THE KHARKIV REGION

Shchekin, SR, Kivva, FV, Gorobets, VN, Kovorotniy, AL
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: sergey_shchekin@ukr.net

https://doi.org/10.15407/rej2016.03.040
Language: Russian
Abstract: 

In the paper we presented the results of systematic measurements of the positioning precision of several stationary navigation stations with known coordinates, which are equipped with single- and dual-frequency GPS/GLONASS navigation receivers. Particular attention has been paid to environment parameters caused by rains (including summer rains with thunderstorms), snowfalls, fogs and clouds. The experimental investigations of the fluctuations of zenith tropospheric delay and spatial coordinates of the reception stations located at the distance of 5.8 km have been performed. The factors which limit the maximum permissible positioning precision have been evaluated. The results of the paper are relevant to the problems of operative prediction of the meteorological phenomena and researching their physical properties.

Keywords: atmosphere monitoring, GNSS radiosignals, GPS, positioning precision, radiowave propagation, remote sensing, zenith tropospheric delay

Manuscript submitted 23.05.2016
PACS     92.60.Ta; 84.40.Ua
Radiofiz. elektron. 2016, 21(3): 40-47
Full text (PDF)

References: 
  1. Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., Ware, R. H., 1992. GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. J. Geophys. Res.: Atmos., 97(D14), pp. 15787–15801. DOI: https://doi.org/10.1029/92JD01517
  2. Kryvenko, О. V., Laush, А. G., Lutsenko, V. І., Lutsenko, І. V., Popov, D. О., Popov, І. V., Sobolyak, О. V., 2015. Use of satellite and tv radiation for study of atmospheric processes. Space Science and Technology, 21(3), pp. 83–90 (in Ukrainian).
  3. Lutsenko, I. V., 2011. Remote sensing of the Earth’s troposphere using radiation of ground-based and satellite radio systems. PhD thesis ed. O. Ya. Usikov Institute for Radiophysics and Electronics of NASU, Kharkov, Ukraine (in Russian).
  4. Kravchenko, V. F., Kravchenko, O. V., Lutsenko, V. I., Lutsenko, I. V., Popov, D. O., 2015. Usage of global navigation systems for detection of dangerous meteorological phenomena. J. Measurement Science and Instrumentation, 6(1), pp. 68–74.
  5. Boniface, K., Ducrocq, V., Jaubert, G., Yan, X., Brousseau, P., Masson, F., Champollion, C., Ch´ery, J., Doerflinger, E., 2009. Impact of high-resolution data assimilation of GPS zenith delay on Miditerranean heavy rainfall forecasting. Ann. Geophys., 27(1), pp. 2739–2753. DOI: https://doi.org/10.5194/angeo-27-2739-2009
  6. Kovorotniy, A. L., Goncharenko, Y. V., Gorobets, V. N., Kivva, F. V., Gorb, A. I., Balan, A. Yu., 2013. Atmosphere monitoring over the Kharkov region by means of GPS. Radiofizika i elektronika, 4(18)(1), pp. 59–64.
  7. Kovorotniy, A. L., Goncharenko, Y. V., Gorobets, V. N., Kivva, F. V., Gorb, A. I., Balan, A. Y., 2013. The comparative analysis of models for estimation of the total moisture content of the troposphere through the GPS measurements over Kharkov. Radiofizika i elektronika, 5(19)(4), pp. 21–26.
  8. Antonovitch, K. M., 2005. Application of satellite radio navigation systems in geodesy. Vol. 1. Moscow: Kartgeotsentr Pabl. (in Russian).
  9. Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., Webb, F. H., 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res., 102(B3), pp. 5005–5017. DOI: https://doi.org/10.1029/96JB03860
  10. SOPAC [online]. Available at: http://sopac.ucsd.edu/
  11. GIPSY OASIS 6.4 Release Notes [online]. Available at: https://gipsy-oasis.jpl.nasa.gov/ gipsy/
  12. Essen, L. and Froome, K. D., 1951. The refractive indices and dielectric constants of air and its principal constituents at 24000 Mc/s. Proc. Phys. Soc. B, 64(10), pp. 862–875. DOI: https://doi.org/10.1088/0370-1301/64/10/303
  13. Saastamoinen, I. I., 1973. Contribution to the theory of atmospheric refraction. Bull. Geodesique, 107(1), pp. 13–34. DOI: https://doi.org/10.1007/BF02522083
  14. Meteorological provision of international aeronavigation. Appendix 3 to the Convention on International Civil Aviation [online]. Available at: http://meteo.gov.ua/files/content/docs/docs VMO IKAO/ (in Russian).
  15. Tverskoy, P. N., 1962. A course on meteorology. Physics of the atmosphere. Leningrad: Gydrometeoizdat Publ. (in Russian).
  16. Bar-Sever, Y. E., Kroger, P. M. and Borjesson, J. A., 1998. Estimating Horizontal Gradients of Tropospheric Path Delay with a single GPS Receiver. J. Geophys. Res., 103(B3), pp. 5019–5035. DOI: https://doi.org/10.1029/97JB03534