• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)


Khizhnyi, VI, Korolyuk, AP, Khizhnaya, TM

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: khizh@ire.kharkov.ua

Language: Russian

High temperature antiferromagnets such as iron borate, hematite etc., have high magnetoelastic coupling. As a result, in the conditions of birefringence effect, there is a possibility to control parameters of sound waves by a small external magnetic field. On the other hand, high magnetoelastic coupling raises the sensitivity of sample magnetic system to external mechanical influences, for example from the side of acoustic contacts with piezotransdusers. In this paper the effect of contactless (electromagnetic) sound generation in external magnetic field, while minimizing the impact of external mechanical stresses on the magnetic properties of the sample is experimentally studied. As a result, the birefringence effect at the electromagnetic excitation of high-frequency ultrasonic wave is detected, which is of interest from the viewpoint of its instrument application. Comparison of a theory of birefringence effect with experimental data is conducted. The magnitude of a magnetoelastic gap for iron borate is obtained.

Keywords: acoustic birefringence, electromagnetic excitation of sound, iron borate

Manuscript submitted 31.05.2016
PACS     43.35.Rw
Radiofiz. elektron. 2016, 21(3): 48-51
Full text (PDF)

  1. Ozhogin, V.I. and Preobrazhenskii, V.L., 1977. Effective angarmonism of the subsystem of antiferomagnetics. Zh. Eksp. and Teor. Fiz., 73(3), pp. 988–1000 (in Russian).
  2. Turov, E.A., 1989. The Cotton-Muton acoustic effect in antiferromagnetics. Zh. Eksp. and Teor. Fiz., 96(6), pp. 2140–2148 (in Russian).
  3. Korolyuk, A.P., Tarakanov, V.V. and Khizhnyi, V.I., 1996. Magnetoacoustic oscillations in antiferromagnet FeBO3. Fizika nizkikh temperatur, 22(8), pp. 924–928 (in Russian).
  4. Strugatsky, M.B., Skibinsky, K.M., Khizhnyi, V.I. and Tarakanov, V.V., 2002. Fine structure of Gakel’-Turov oscillations in iron borate. J. Mag. Mag. Mater., 241(2–3), pp. 330–334. DOI: https://doi.org/10.1016/S0304-8853(01)01367-1
  5. Khizhnyi, V.I., Tarakanov, V.V., Korolyuk, A.P., Khizhnaya, T.M., 2006. The electromagnetic sound excitation in iron borate. Fizika nizkikh temperatur, 32(7), pp. 838–845 (in Russian).
  6. Truell, R., Elbaum, Ch. and Chick, B.B., 1969. Ultrasonic Methods in Solid State Physics. NY: Academic Press.
  7. Seavey, M.H., 1972. Acoustic Resonance in the Easy-Plane Weak Ferromagnet a-Fe2O3 and FeBO3. Solid State Commun., 10(2), pp. 219–223. DOI: https://doi.org/10.1016/0038-1098(72)90385-7
  8. Seleznev, V.N., 1987. Magnetic-ordered iron borate. Simferopol, Ukraine: Dis. D-r fiz.-mat. Nauk (in Russian).
  9. Krug fon Nidda, Kh.A., Svistov, L.E. and Prozorova, L.A., 2010. Spin-wave resonances in antiferromagnets. Fizika nizkikh temperatur, 36(8/9), pp. 926–932 (in Russian).
  10. Turov, E.A., Kolchanov, A.V., Men’shenin, V.V. Mirsaev, I. F., Nikolaev, V. V., 2001. Symmetry and physical properties of antiferromagnets. Moscow, Russia: Fizmatlit Publ. (in Russian).
  11. Strugatskii, M.B. and Skibinskii, K.M., 2015. The effective hexagonal magnetic anisotropy of hematite: taking into account higher invariants. Fizika tverdogo tela, 57(7), pp. 1329–1333 (in Russian).
  12. Tarakanov, V.V. and Khizhnyi, V.I., 1996. Damping a non-magnetic elastic mode in an antiferromagnet FeBO3 plate. Fizika nizkikh temperatur, 22(7), pp. 752–757 (in Russian).