• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

AlGaInAs GRADED-DAP GUNN DIODE

Storozhenko, IP, Kaydash, МV
Organization: 

National University of Pharmacy

National University of Pharmacy
53 Pushkinska str., Kharkiv 61002, Ukraine
E-mail: storozhenko.igor@gmail.c

https://doi.org/10.15407/rej2016.03.052
Language: Russian
Abstract: 

Gunn diodes are the active elements for generating electromagnetic waves in the millimeter range. An urgent task of today is to increase their cutoff frequency and output power. One of the ways to do it is to use graded-gap semiconductors. The paper presents the results of numerical experiments on the electromagnetic waves generation with the help of Gunn diodes based on graded-gap AlGaAs-GaAs-InGaAs compound. The numerical simulation has been conducted by means of the temperature model of intervalley transfer of electrons in the graded-gap semiconductors. The length of the diode active area was 2.5 mm with the concentration of ionized impurities therein 1016 cm3. We have shown that the AlGaAs-GaAs-InGaAs-diodes can be used as active elements for generating electromagnetic oscillations in the millimeter wave range. In GaAs-InxGa1–xAs- and Al0.2Ga0.8As-GaAs-InxGa1–xAs-diodes the output power increases almost linear with InAs percentage in the range from 0 to 50 %. As it turned out GaAs-Ga0.5In0.5As-diode has the greatest value of the output power Р = 12,2 kW´cm–2 at frequency of f = 45 GHz and efficiency of h = 10.5 %. Al0.2Ga0.8As-GaAs-In0.5Ga0.5As-diode has the greatest generation efficiency of h = 11,3% at Р = 10.6 kW´cm–2 and f = 41 GHz output power and generation efficiency of Al0.2Ga0.8As-GaAs-diode in 2 to 3 times lower than the parameters of mentioned above diodes. Our findings extend the knowledge of the physical processes of carrier transport in complex semiconductor structures and can be used for technological development of new high-performance devices based on A3B5 semiconductors.

Keywords: domain, generation efficiency, graded-gap semiconductor, Gunn diode, intervalley electron transfer, output power, temperature model, terahertz electronics

Manuscript submitted 23.05.2016
Radiofiz. elektron. 2016, 21(3): 52-57
Full Text (PDF)

References: 
  1. Isaev, V. M., Kabanov, I. N., Komarov, V. V. and Meschanov, V. P., 2014. Modern radio-electronic systems of terahertz frequency range. Proc. TUSUR, 34(4), pp. 5–21 (in Russian).
  2. Kürner, T., 2012. Towards Future THz Communications Systems. Terahertz Science and Technology, 5(1), pp. 11–16.
  3. Nagatsuma, T., Horiguchi, S., Minamikata, Y., Yoshimizu, Y., Hisatake, S., Kuwano, S., Yoshimoto, N., Terada, J. and Takahashi, H., 2013. Terahertz wireless communications based on photonics technologies. Opt. Express, 21(21), pp. 23736–23747. DOI: https://doi.org/10.1364/OE.21.023736
  4. Woodward, Т. 100 Gb/s RF Backbone [online]. Available at: http://www.darpa.mil/program/100-gb-s-rf-backbone
  5. Mayskaya, V., 2011. Filling the Terahertz Gap. Semiconductors Penetrate the Submillimeter Band. Electronics: Science, Technology, Business, 8, pp. 74–87 (in Russian).
  6. Li, H., Feng, Z., Tang, C.W. and Lau, K.M., 2011. Fabrication of 150-nm T-Gate Metamorphic AlInAs/GaInAs HEMTs on GaAs Substrates by MOCVD. IEEE Electron Device Lett., 32(9), pp. 1224–1226. DOI: https://doi.org/10.1109/LED.2011.2159824
  7. Khalid, A., Li, C., Papageogiou, V., Dunn, G. M., Steer, M. J., Thayne, I. G., Kuball, M., Oxley, C. H., Montes Bajo, M., Stephen, A., Glover, J., Cumming, D. R. S., 2013. In0.53Ga0.47As planar Gunn diodes operating at a fundamental frequency of 164 GHz. IEEE Electron Device Lett., 34(1), pp. 39–41. DOI: https://doi.org/10.1109/LED.2012.2224841
  8. Maricar, M.I., Khalid, A., Dunn, G., Cumming, D., Oxley, C. H., 2014. Experimentally estimated dead space for GaAs and InP based planar Gunn diodes. Semicond. Sci. Technol., 30(1), pp. 012001 (5 p.).
  9. Couch, N. R., Beton, P. H., Kelly, J. and Kerr, M. M., 1988. The use of linearly graded composition AlGaAs injectors for intervalley transfer in GaAs: theory and experiment. Solid State Electron., 31(3–4), pp. 613–616. DOI: https://doi.org/10.1016/0038-1101(88)90353-X
  10. Förster, A., Lepsa, M. I., Freundt, D., Stock, J. and Montanari, S., 2007. Hot electron injector Gunn diode for advanced driver assistance systems. Appl. Phys. A, 87(3), pp. 545–558. DOI: https://doi.org/10.1007/s00339-007-3872-5
  11. Storozhenko, I. P., Prokhorov, E. D. and Arkusha, Yu. V., 2004. Simulation of transferred electron devices with linearly graded composition of 3–5 threefold semiconductor in active zone. Int. J. Infrared Millimeter Waves, 25(6), pp. 879–890. DOI: https://doi.org/10.1023/B:IJIM.0000030787.58751.fd
  12. Storozhenko, I. P., 2007. Initiation and Drift of the Space-Charge Waves in Devices Based on Variband GaPx(z)As1–x(z) with the Intervalley Electron Transport. In V. M. Yakovenko, ed. 2007. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 12(1), pp. 243–249 (in Russian).
  13. Storozhenko, I. P., 2007. Frequency characteristics of diodes with intervalley electron transfer that are based on variband Inx(z)Ga1−x(z)As with various cathode contacts. Radiotekhnika i elektronika, 52(10), pp. 1158–1164 (in Russian).
  14. Storozhenko, I. P., 2006. Gunn diodes based on the graded-gap Alx(z)Ga1–x(z)As with various cathode contacts. Radiofizika i radioastronomiya, 11(2), pp. 186–197 (in Russian).
  15. Storozhenko, I.P., 2006. InP1–x(z)Asx(z) variband Gunn diodes with different cathode contacts. In V. M. Yakovenko, ed. 2006. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 11(3), pp. 421–429 (in Russian).
  16. Storozhenko, I. P., Yaroshenko, A. N. and Kaydash M. V., 2012. Graded-gap AlInN Gunn Diodes. Semiconductor Physics, Quantum Electronics & Optoelectronics, 15(2), pp. 176–180. DOI: https://doi.org/10.15407/spqeo15.02.176