• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)


Antonenko, JV, Gribovsky, AV

Institute of Radio Astronomy of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: grib@rian.kharkov.ua

Language: Russian

Mirrors of the Fabry-Perot resonator in the microwave band can be represented by conducting plates with a great number of holes, which ensure partial mirror transmission.It is shown through numerical modeling that the magnitude of the reflection factor of a plane linearly polarized wave from a resonator with coaxial-sector holes in the mirrors is equal to zero for a wave-length which is greater than the cutoff one of the coaxial-sector waveguides. In this case the electromagnetic field amplitude in the resonant cavity shows an increase by an order of magnitude as compared with the exciting field amplitude. It has been found that replacement of one of the mirrors in the Fabry-Perot resonator by a continuous screen can result in increasing the plane wave ampli-tude in the resonator by almost two orders of magnitudewith respect to that of the exciting field.

Keywords: coaxial-sector waveguide, evanescent waveguide, Fabry-Perot resonator, reflection coefficient, screen of finite thickness

Manuscript submitted 07.02.2017
Radiofiz. elektron. 2017, 22(1): 21-26
Full text (PDF)

  1. Tronciu, V. Z., Wünsche, H. J., Wolfrum, M. and Radziunas, M., 2006. Semiconductor Laser under Resonant Feedback from a Fabry-Perot Resonator: Stability of Continuous-Wave Operation. Physical Review E. vol. 73, no. 4, pp. 046205(7). DOI: 10.1103/PhysRevE.73.046205
  2. Neumann, N., Ebermann, M., Kurth, S. and Hiller, K., 2008. Tunable Infrared Detector with Integrated Micromachined Fabry-Perot Filter. J. Micro/Nanolithography, MEMS, and MOEMS. vol. 7, no. 2, pp. 021004(9). DOI: 10.1117/1.2909206
  3. Zhi-Chen Ge, Wen-Xun Zhang, Zhen-Guo Liu and Ying-Ying Gu, 2006. Broadband and High-Gain Printed Antennas Constructed from Fabry-Perot Resonator Structure Using EBG or FSS Cover. Microwave and Optical Technology Lett. vol. 48, no. 7, pp. 1272–1274. DOI: 10.1002/mop.21674
  4. Ronan Sauleau, Philippe Coquet, Toshiaki Matsui and Jean-Pierre Daniel, 2003. A New Concept of Focusing Antennas Using Plane-Parallel Fabry-Perot Cavities with Nonuniform Mirrors. IEEE Trans. Antennas and Propagation. vol. 51, no. 11, pp. 3171–3175. DOI: 10.1109/TAP.2003.818795
  5. Aref, S. H., Latifi, H., Zibaii, M. I. and Afshari, M., 2007. Fiber Optic Fabry-Perot Pressure Sensor with Low Sensitivity to Temperature Changes for Downhole Application. Optics Communications. vol. 269, no. 2, pp. 322-330. DOI: 10.1016/j.optcom.2006.08.009
  6. Zvanovec, S., Piksa, P., Cerny, P., Mazanek, M. and Pechac, P., 2007. Gas Attenuation Measurement by Utilization of Fabry-Perot Resonator. In: The Second European Conference on Antennas and Propagation, EuCAP. EICC,  Edinburgh, UK, 11–16 November. DOI: 10.1049/ic.2007.1557
  7. Vlasov, S. N., Parshin, V. V. and Serov, E. A., 2010. Methods of Research of Thin Dielectric Films in the Millimeter Range. Zhurnal tekhnicheskoy fiziki. vol. 80, no. 12, pp. 73–79 (in Russian).
  8. Nicolas Guérin, Stefan Enoch, Gérard Tayeb, Pierre Sabouroux, Patrick Vincent and Hervé Legay, 2006. A Metallic Fabry-Perot Directive Antenna. IEEE Trans. Antennas and Propagation. vol. 54, no. 1, pp. 220–224. DOI: 10.1109/TAP.2005.861578
  9. Morozov A. N., 2012. Fabry-Perot Interferometer for Recording High-Frequency Fluctuations of Space-Time Metric. Vestnik MGTU im. N. E. Baumana. Ser. Estestvennye nauki. no. 5, pp. 29–38 (in Russian).
  10. Gribovsky, A. V. and Kuz’michev, I. K., 2016. Fabry-Perot Resonator Formed by Two Screens with Rectangular Holes. Radiofizika i radioastronomiya. vol. 21, no. 1, pp. 58–64 (in Russian).
  11. Lytvynenko, L. М. and Prosvirnin, S. L., 2012. Wave Diffraction by Periodic Multilayer Structure. Cambridge Scientific Publ.
  12. Antonenko, J. V. and Gribovsky, A. V., 2012. Polarization and Frequency-Selective Properties of a Double Screen of Finite Thickness with Coaxial-Sector Aperture. Radiofizika i radioastronomiya. vol. 17, no. 3, pp. 276–281 (in Russian).
  13. Gribovsky, A. V. and Mangushina, J. V., 2010. Cha-racteristics of Radiation Active Phased Array of Coaxial-Sector Waveguides. Fizika volnovykh protsessov i radiotekhnicheskie sistemy. vol. 13, no. 2, pp. 24–29 (in Russian).