• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

SCHUMANN RESONANCE BACKGROUND SIGNAL SYNTHESIZED IN TIME

Kudintseva, IG, Nikolayenko, SA, Nickolaenko, AP, Hayakawa, M
Organization: 

V. N. Karazin Kharkiv National University
4, Svobody Sq., Kharkiv, 61022, Ukraine

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkiv, 61085, Ukraine
E-mail: sasha@ire.kharkov.ua

Hayakawa Institute of Seismo Electromagnetics, University of Electro-Communications
Tokyo 182-8585, Japan
E-mail: hayakawa@hi-seismo-em.jp

https://doi.org/10.15407/rej2017.01.027
Language: Russian
Abstract: 

Simulation of signals of the global electromagnetic reso-nance is of great interest in theory and the measurement practice. We describe a method of generating the artificial Schumann resonance signal and present its major features. It is shown that the synthesized time domain record exhibits many of the experimentally observed characteristics pertinent to the natural radio signals. We propose using the synthetic signals in simulations of natural ELF radio noise and in calibrations of the receiving equipment.

Keywords: ELF background radio noise, power spectra of Schumann resonance, schumann resonance

Manuscript submitted 12.12.2016
Radiofiz. elektron. 2017, 22(1): 27-37
Full text (PDF)

 

References: 
  1. NICKOLAENKO, A. P. and HAYAKAWA, M., 2000. Resonances in the Earth-ionosphere cavity. Dordrecht-Boston-London: Kluwer Academic Publ.
  2. NICKOLAENKO, A. P., 1997. Natural ELF Electromagnetic Pulses. Telecommunications and Radio Engineering. vol. 51, no. 1, pp. 25–34 (in Russian). DOI: https://doi.org/10.1615/TelecomRadEng.v51.i1.40
  3. NICKOLAENKO, A. P., HAYAKAWA, M., 1998. Natural electromagnetic pulses in the ELF range. Geophys. Res. Lett. vol. 25, no. 16, pp. 3103–3106. DOI: https://doi.org/10.1029/98GL01699
  4. NICKOLAENKO, A. P., HAYAKAWA, M., KUDINTSEVA, I. G., MYAND, S.V. AND RABINOWICZ, L.M., 1999. ELF sub-ionospheric pulse in time domain. Geophys. Res. Lett. vol. 26, no. 7, pp. 999–1002. DOI: https://doi.org/10.1029/1999GL900124
  5. MYAND, S. V., NICKOLAENKO, A. P., RABINOWICZ, L. M., KUDINTSEVA, I. G., HAYAKAWA, M., 2001. Time-Domain Representation of ELF Pulses Generated by Lightning Discharges. Telecommunications and Radio Engineering. vol. 55, no. 4, pp. 1–8. DOI: https://doi.org/10.1615/TelecomRadEng.v55.i4.10
  6. NICKOLAENKO, A. P., RABINOWICZ, L. M., 2001. Acceleration of the convergence of time domain presentations for the ELF pulses from the lighting strokes. Telecommunications and Radio Engineering. vol. 55, no. 5, pp. 16–22. DOI: https://doi.org/10.1615/TelecomRadEng.v55.i5.30
  7. NICKOLAENKO, A. P., RABINOWICZ, L. M., HAYAKAWA, M., 2004. Time domain presentation for ELF pulses with accelerated convergence. Geophys. Res. Lett. vol. 31, L05808, DOI: https://doi.org/10.1029/2003GL018700
  8. NICKOLAENKO, A. P., RABINOWICZ, L. M., HAYA-KAWA, M., 2004. Natural ELF pulses in the time domain: series with accelerated convergence. IEEJ Trans. on Fundamentals and Materials. vol. 124, no. 12, pp. 1210–1215. DOI: https://doi.org/10.1541/ieejfms.124.1210
  9. TIKHONOV, V. I., 1982. Startistical radio technique, 2nd ed. Moscow: Radio i svyaz' (in Russian).
  10. NICKOLAENKO, A., HAYAKAWA, M., 2014. Schumann resonance for tyros (Essentials of Global Electromagnetic Resonance in the Earth–Ionosphere Cavity). Tokyo-Heidelberg-New York-Dordrecht-London: Springer. DOI: https://doi.org/10.1007/978-4-431-54358-9
  11. NICKOLAENKO, A. P., 1981. One-dimensional distribution function of the vertical electric component of terrestrial ELF radio noise. Radiophysics and Quantum Electronics. vol. 24, no. 1, pp. 24–30. DOI: https://doi.org/10.1007/BF01034349
  12. DANILOV, D. L., AND ZHIGLYAVSKY, A. A., 1997. Principal components of time series: the Caterpillar method. SPb.: SPb. University Publ. (in Russian).
  13. PRICE, C., 2016. ELF ElectromagneticWaves from Lightning: The Schumann Resonances. Atmosphere. vol. 7, 116, pp. 1–20; DOI:10.3390/atmos7090116 www.mdpi.com/journal/atmosphere
  14. NICKOLANEKO, A. P., SHVETS, A. V., AND HAYAKAWA, M., 2016. Propagation of Extremely Low-Frequency Radio Waves. Wiley Encyclopedia of Electrical and Electronics Engineering. J. Webster (ed.), John Wiley & Sons, Inc. pp. 1–20, DOI: https://doi.org/10.1002/047134608X.W1257.pub2
  15. NICKOLAENKO, A. P., GALUK, Yu. P., AND HAYAKAWA, M., 2016. Extremely Low Frequency (ELF) Wave Propagation: Vertical Profile of Atmospheric Conductivity Matching with Schumann Resonance Data. Horizons in World Physics. vol. 288, Chapter 6, NOVA Sci. Publ.