• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)


S. Karelin, Y

Institute of plasma electronics and new methods of acceleration
1, Akademicheskaya St., Kharkov, 61108, Ukraine
E-mail: sergeykarelin1976@gmail.com

Language: Russian

In recent years, the high-voltage pulse devices using nonlinear properties of ferrite have received more attention. For the analysis of this kind of objects, the 2D numerical modeling technology of nonlinear saturated ferrites by FDTD method has been developed. Landau–Lifshitz equation, which describes ferrite dynamics, is solved by Runge–Kutte method and unknown components of electromagnetic fields are calculated by using linear interpolation. This method has been used to analyze oscillation forming in coaxial line partially filled with ferrite magnetized by external magnetic field. The numerical results are in agreement with the experimental data

Keywords: coaxial line, finite difference method in time domain, high-voltage impulse, Landau–Lifshitz equation, Maxwell equation, oscillations, Runge–Kutte method, saturated ferrite

Manuscript submitted 26.01.2017 
Radiofiz. elektron. 2017, 22(1): 51-56
Full text (PDF)

  1. TAFLOVE, ALLEN, HAGNESS, SUSAN C., 2005. Computational e1ecrcodynamics: the finite-difference time-domain method. 3rd ed. Norwood: Artech House, Inc.
  2. PEREDA, J. A., VIELVA, L. A., VEGAS, A. and PRIETO, A., 1993. A treatment of magnetized ferrite using the FDTD method. IEEE Microwave and Guided Wave Letters. May, vol. 3, no. 5, pp. 136–138.
  3. PEREDA, J. A., VIELVA, L. A., SOLANO, M. A., VEGAS, A. and PRIETO, A., 1995. FDTD analysis of magnetized ferrites:  application to calculation of dispersion characteristics of ferrite-loaded waveguides. IEEE Transaction on Microwave Theory and Techniques. Feb., vol. 43, no. 2, pp. 350–356.
  4. DOLAN, J. E., 1999. Simulation of shock waves in ferrite-loaded coaxial transmission lines with axial bias. J. Phys. D: Appl. Phys. 7 August, vol. 32, no. 15, pp. 1826–1831.
  5. GUBANOV, V. P., GUNIN, A. V., KOVAL’CHUK, O. B., KUTENKOV, V. O., ROMANCHENKO, I. V., ROSTOV, V. V., 2009. Effective transformation of the energy of high-voltage pulses into high-frequency oscillations using a saturated-ferrite-loaded transmission line. Tech. Phys. Lett. vol. 35, Iss. 7, pp. 626–628. DOI: https://doi.org/10.1134/S1063785009070116
  6. VASELAAR, A., 2011. Experimentation and modeling of pulse sharpening and gyromagnetic precession within a nonlinear transmission. A dissertation in electrical engineering. December. Texas Tech University.
  7. REALE, D. V., 2013. Coaxial Ferrimagnetic Based Gyromagnetic Nonlinear Transmission Lines as Compact High Power Microwave Sources. A dissertation in electrical engineering. December. Texas Tech University.
  8. KATAEV, I. G., 1963. Electromagnetic Shock Waves. Moscow, USSR: Sovetskoe Radio (in Russian).
  9. FURUYA, S., MATSUMOTO, H., FUKUDA, H., OHBOSHI, T., TAKANO, S. and IRISAWA, J., 2002. Simulation of Nonlinear Coaxial Line Using Ferrite Beads. Jpn. J. Appl. Phys. Nov., vol. 41, no. 11A, pp. 6536–6540.
  10. ROSTOV, V. V., BYKOV, N. M., BYKOV, D. N., KLIMOV, A. I., KOVALCHUK, O. B., ROMANCHENKO, I. V., 2010. Generation of Subgigawatt RF Pulses in Nonlinear Transmission Lines. IEEE Trans. on Plasma Sci. Oct., vol. 38, no. 10, pp. 2681–2685.
  11. AHN, J. J.-W., KARELIN, S. Y., KWON, H.-O., MAGDA, I. I. and SINITSIN, V. G., 2015. Exciting high frequency oscillations in a coaxial transmission line with a magnetized ferrite. Korean J. Magnetics. Dec., vol. 20, no. 4, pp. 460–465.
  12. GUREVICH, A. G., 1973. Magnetic Resonance in Ferrites and Antiferromagnets. Moscow, USSR: Nauka (in Russian).
  13. REALE, D. V., PARSON, J. M., NEUBER, A. A., DICKENS, J. C. and MANKOWSKI, J. J., 2016. Investigation of a stripline transmission line structure for gyromagnetic nonlinear transmission line high power microwave sources. Rev. of Scientific Instruments. March, vol. 87, Iss. 3, pp. 034706.