• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)


Lukin, KA, Tatyanko, DN, Pikh, AB, Zemlyaniy, OV

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: lukin.konstantin@gmail.com

Language: Russian

The results of applying the method of spectral interferometry in optical band for measuring the thicknesses of thin films are presented in this paper. We have analyzed analytically and experimentally the spectrum of the total radiation at the output of the fiber optic Fabry-Perot interferometer which is formed by broadband light reflections from the multilayer structures, including the special case of two reflections when the object of study are the thin films. The spectrum informative components corresponding to the distances to the reflective surfaces have been obtained. The results of experiments conducted using broadband LED light sources of optical radiation are in full agreement with the results which were obtained theoretically. A software tool with a graphical user interface for processing and visualization of the experimental results has been developed. The obtained results will help improve the performance of the measuring equipment in medicine, profilometry, and create standards for metrology.

Keywords: double spectral analysis, fiber optic interferometer, LED, noise radar technology, secondary spectrum, spectral interferometry method, thin films

Manuscript submitted 14.12.2016
PACS 42.87.Bg; 68.55.Jd
Radiofiz. elektron. 2017, 22(1): 77-85
Full text (PDF)

  1. LUKIN, K. A., 1999. Noise radar technology. Radiofizika i elektronika. Kharkov. vol. 4, no. 3, pp. 105–111 (in Russian).
  2. LUKIN, K. A., KULIK, V. V., MOGYLA, A. A., 2002. Spectral interferometry method and autodyne (self-mixing) effect for noise radar applications. First International Workshop on the Noise Radar Technology: conf. proc. Yalta, Crimea, Ukraine, Sept. 18–20. P. 179–186.
  3. LUKIN, K. A., 2005. Noise Radar Technology: the principles and short overview. Applied Radio Electronics. vol. 4, no. 1, pp. 4–13.
  4. LUKIN, K. A., 2009. Millimeter-Wave Band Noise Radar. Telecommunications and Radio Engineering. Vol. 68, no. 14, pp. 1229–1255. DOI: https://doi.org/10.1615/TelecomRadEng.v68.i14.20
  5. POIRIER, J. L., 1968. Quasi-monochromatic scattering and some possible radar applications. Radio Science. vol. 3, no. 9, pp. 881–886. DOI: https://doi.org/10.1002/rds196839881
  6. EFIMOV, B. P., LUKIN, K. A., RAKITYANSKY, V. A., 1988. On the transformation of the spectrum of stochastic self-oscillations under the influence of reflections. Zhurnal tekhnicheskoy fiziki. vol. 58, no. 12, pp. 2398–2400 (in Russian).
  7. ZALOGIN, N. N., KALINKEVICH, A. A., KIRILLIN, K. L., KISLOV, V. Ya., 1990. The possibility of measuring the distance to a rough surface by spectral analysis of continuous noise signal. Radiotekhnika i elektronika. vol. 35, no. 3, pp. 548–555 (in Russian).
  8. ZALOGIN, N. N., KALINKEVICH, A. A., KIRILLIN, K. L., 1993. The calculation of signal-to-noise ratio for the radar, which uses the method of double spectral analysis of the noise signal. Radiotekhnika i elektronika. vol. 38, no. 2, pp. 278–286 (in Russian).
  9. KULIK, V. V., LUKIN, K. A., RAKITYANSKY, V. A., 1997. Modification of the method of double spectral processing of the noise signals. Ukrainskiy metrologicheskiy zhurnal. no. 4, pp. 28–32 (in Russian).
  10. MOGYLA, A. A., LUKIN, K. A., KULIK, V. V., 2000. The statistical error of distance measurement by the spectral interferometry method. Radiofizika i elektronika. vol. 5, no. 1, pp. 163–170 (in Russian).
  11. KALININ, V. I., 2005. Ultra wide band radiolocation with double spectral processing of noise signals. Radiotekhnika. no. 3, pp. 25–35 (in Russian).
  12. LUKIN, K. A., MACHEKHIN, Yu. P., DANAILOW, M. B. and TATYANKO, D. N., 2011. Application of the Spectral Interferometry Method for Micro- and Nanodistance Measurement. Telecommunications and Radio Engineering. vol. 70, no. 17, pp. 1579–1591. DOI: https://doi.org/10.1615/TelecomRadEng.v70.i17.70
  13. TATYANKO, D., LUKIN, K., PIKH, A., 2016. Application of Optical Spectral Interferometry for Thin Film Thickness Measurement. In: Ninth International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW'2016) Kharkov, Ukraine, June 20–24. [CD]. Papers\Session F\F-7.pdf.
  14. LUKIN, K. A., DANAILOW, M. B., MACHEKHIN, Yu. P. and TATYANKO, D. N., 2013. Nano-distance measurements using spectral interferometry based on light-emitting diodes. Applied Radio Electronics. vol. 12, no. 1, pp. 166–171.
  15. LUKIN, K. A., TATYANKO, D. N., ZEMLYANIY, O. V., PIKH, A. B., 2016. Measuring the thickness of thin films by spectral interferometry method. Prikladnaya radioelektronika. vol. 15, no. 4, рр. 350–354 (in Russian).
  16. HLUBINA, P., 2002. Dispersive white-light spectral interferometry to measure distances and displacements. Optics Communications. vol. 212, Iss. 1–3, pp. 65–70. DOI: https://doi.org/10.1016/S0030-4018(02)01990-9
  17. TROITSKY, V. S., 1955. Fluctuations in the loaded line. Zhurnal tekhnicheskoy fiziki. vol. 25, no. 8, pp. 1426–1435 (in Russian).
  18. MANOJLOVIĆ, L. M., 2010. A simple white-light fiber-optic interferometric sensing system for absolute position measurement. Optics and Lasers in Engineering. vol. 48, no. 4, pp. 486–490. DOI: https://doi.org/10.1016/j.optlaseng.2009.08.008
  19. THORLABS. SP2-USB – USB 2.0 Spectrometer, 500–1000 nm Spectral Range [online]. Available from: https://www.thorlabs.com/ thorproduct.cfm?partnumber=SP2-USB&pn=SP2-USB#5675