• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)


Ivzhenko, LI, Yudina, DI, Tarapov, SI

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
V. N. Karazin Kharkiv National University
4 Svobody Sq., Kharkiv, 61022, Ukraine
Kharkiv National University of Radio Electronics
14, Nauki ave., Kharkiv, 61166, Ukraine

E-mail: ivzhenko@ire.kharkov.ua , iudina.darja2013@yandex.ua , tarapov@ire.kharkov.ua

Language: Russian

At present, the study of such a phenomenon as "defect mode" is topical. Defect modes arise from the violation of periodicity in photonic crystals. This interest is due to the periodicity violations in nature occurring more often than the ideal periodicity. Available to date theoretical studies of defect modes in artificial media (metamaterials) give only a qualitative description of this effect. In this paper the experimental analysis of spectral properties of the anisotropic wire medium in the microwave range of wave-band is given. We experimentally observed the occurrence of defect modes in the band gap of the transmission spectra of wire medium metamaterial with spatial defect. The frequency dependence of transmission peaks location on the defect layer thickness is analyzed. The quantitative agreement between the experimental data and the numerical ones is shown. The research results are useful in the development of various telecommunication devices: filters, couplers, attenuators, electromagnetic sensors, lenses with subwavelength resolution, small-sized antennas objects "invisible" at a certain frequency range and others.

Keywords: defect modes, metamaterial, wire medium

Manuscript submitted 18.05.2017
PACS 42.25.Gy, 41.20.Jb, 07.57.Pt
Radiofiz. elektron. 2017, 22(2): 11-16
Full text (PDF)

  1. DAVIDSON, S. G., LEVINE, J. P., 1973. Surface (Tamm) states. Мoscow: Mir. Publ. (in Russian).
  2. LIVSHYTS, M., PEKAR, S., 1955. Tamm's bound states of electrons on the crystal surface and surface vibrations of lattice atoms. Uspekhi Fizicheskikh Nauk. Vol. 56, Iss. 4, pp. 531–569 (in Russian).
  3. BORN, M., WOLF, E., 1959. Principles of optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light., London, New York: Pergamon Press. (in Russian).
  4. BASS, F. G., BULGAKOV, А. А., TETERVOV, А. P., 1989. High-frequency properties of semiconductors with super lattices. Мoscow: Nauka Publ. (in Russian).
  5. AVERKOV, Yu. О., TARAPOV, S. I., KHARCHENKO, G. А. and YAKOVENKO, V. M., 2014. Surface electromagnetic states in the photonic crystal-ferrite-plasma-like medium structure. Low Temperature Physics. Vol. 40, no 7, pp. 667–673 (in Russian).
  6. BROVENKO, А. V., MELEZHIK, P. N., POEDENCHUK, A. E., 2013. Spectral problems in the theory of wave diffraction on layered inhomogeneous media. Radiophizika i electronika. Vol. 4(18), no. 1, pp. 6–14 (in Russian).
  7. SIEVENPIPER, D. F., SICKMILLER, M. E. and YABLONOVITCH, E., 1996. 3D Wire Mesh Photonic Crystals. Phys. Rev. B. Vol. 76, no. 14, pp. 2480–2483.
  8. KUZMIAK, V., MARADUDIN, A. A. and PINCEMIN, F., 1994. Photonic band structures of two-dimensional systems containing metallic components. Phys. Rev. B. Vol. 50, no. 23, pp. 16835–16844.
  9. POKROVSKY, A. L., EFROS, A. L., 2002. Nonlocal electrodynamics of two-dimensional wire mesh photonic crystals. Phys. Rev. B. Vol. 65, Iss. 4, p. 045110.
  10. NESTERENKO, D. V. KOTLAR, V. V., 2008. Light Scattering on a dielectric cylinder, including a two-dimensional lattice of metallic nanorods. Computer Optics. Vol. 32, no. 1, pp. 23–28 (in Russian).
  11. PENDRY, J. B., HOLDEN, A. J., STEWART, W. J., YOUNGS, I. I., 1996. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. Vol. 76, Iss. 25, pp. 4773–4776.   DOI:https://doi.org/10.1103/PhysRevLett.76.4773
  12. VINOGRADOV, А. P., DOROFEENKO, А. V., MERZLIKIN, А.M. and LISANSKI, A. A., 2010. Surface states in photonic crystals. PHYS-USP. vol. 53, no. 3, pp. 249–263.
  13. BELETSKI, N. N., BORYSENKO, S. А., GVOZDEV, N. I., 2013. Interaction of plasma and defective modes in one-dimensional layered periodic dielectric structures bordering upon plasma-like media. Radiophizika i electronika. Vol. 18, no. 3, pp. 55–63 (in Russian).
  14. BELETSKI, N. N., BORYSENKO, S. А., GVOZDEV, N. I., 2014. The resonant interaction of electromagnetic waves in a defect dielectric periodic layered structure placed in a parallel-plate waveguide. Radiophizika i electronica. Vol. 5(19), no. 2, pp. 61–67 (in Russian).
  15. BELETSKII, N. N., BORYSENKO, S. A., GVOZDEV, N. I., 2015. Interaction of plasma and defective modes in one-dimensional layered periodic dielectric structures borde-
    ring upon plasma-like media Telecommunications and Radio Engineering. Vol. 74, no. 13, pp. 1175–1191.   DOI:https://doi.org/10.1615/TelecomRadEng.v74.i13.50
  16. BELETSKII, N. N., BORYSENKO, S. A., GVOZDEV, N. I., 2015. Influence of the crystal lattice dielectric constant of conductive medium on the resonance interaction of electromagnetic waves in the defect photonic crystal–conductor structure. Radiophizika i electronica. Vol. 6(20), no. 1, pp. 62–67 (in Russian).
  17. BELETSKII, N. N., BORYSENKO, S. A., 2016. On the spectrum of electromagnetic waves in one-dimensional defective photon crystal bordering on conducting medium. Radiophizika i electronica. Vol. 7(21), no. 2, pp. 22–27 (in Russian).
  18. BELETSKII, N. N., BORYSENKO, S. A., GVOZDEV, N. I., 2016. On The Spectrum Of Electromagnetic Waves In The One-Dimensional Defective Photon Crystal Bordering On Conducting Medium. Telecommunications and Radio Engineering. Vol. 75, Iss. 16, pp. 1457–1465.  DOI:https://doi.org/10.1615/TelecomRadEng.v75.i16.40
  19. IVZHENKO, L., ODARENKO, E. and TARAPOV, S., 2016. Mechanically Tunable Wire Medium Metamaterial in the Millimeter Wave Band. PIER Lett. Vol. 64, pp. 93–98.  DOI:https://doi.org/10.2528/PIERL16090903
  20. AVERKOV, Yu. О., 2012. Influence of a defective layer at the interface between a photonic crystal and a plasma-like medium on properties of surface electromagnetic states. Dop. NAN Ukraini. No. 9, pp. 66–71 (in Russian).
  21. KHARCHENKO, A. A., TARAPOV, S. I. 2014. Defect Mode Formation in the Spectrum of a Spatially Bounded Photonic Finite-Size Crystal Telecommunications and Radio Engineering. Vol. 73, no. 6, pp. 547–553.