• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)


Galyuk, YP, Nikolaenko, AP, Hayakawa, M

Saint-Petersburg State University
Universitetskii prospekt 35, Petergof, Saint Petersburg, Russia 198504
O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
Hayakawa Institute of Seismo Electromagnetics Co. Ltd. (HISEM),
508 Incubation center of the University of Electro-Communications (UEC)
Japan, Tokyo

E-mail: j.galuk@spbu.ru; sasha@ire.kharkov.ua; hayakawa@hi-seismo-em.jp

Language: Russian

Accounting for the actual structure of the lower ionosphere in the problems of global electromagnetic (Schumann) resonance is an important and urgent task. The paper analyzes an impact of deviations in the vertical profile of the atmosphere conductivity at the night and the day sides of the planet on the spatial distribution of electromagnetic field in the Schumann resonance band. The cavity characteristics depend on the conductivity profiles and are accounted for at the day and the night sides by using the full wave solution method. The problem in non-uniform cavity is solved with the help of 2D telegraph equation. The shift of the maximum amplitude of the electric field component from the source geometric antipode is demonstrated at several frequencies for different locations of the source, and in the models of smooth and sharp day–night transition. We demonstrate that the day-night non-uniformity is able to shift the antipode maximum of the vertical electric field from the source geometric antipode of the center towards the center of the day hemisphere by a distance reaching 300 km.

Keywords: schumann resonance, spatial distribution of field nearby the source antipode in the spherical cavity, vertical profile of atmosphere conductivity

Manuscript submitted 13.03.2017
PACS: 93.85.Bc; 93.85.Jk; 94.20.Cf; 94.20.ws
Radiofiz. elektron. 2017, 22(2): 28-40
Full text (PDF)

  1. MADDEN, T. and THOMPSON, W., 1965. Low frequency electromagnetic oscillations of the Earth–ionosphere cavity. Rev. Geophys. May, vol. 3, Iss. 2, pp. 211–254.
  2. BLIOKH, P. V., NICKOLAENKO, A. P., FILIPPOV, Yu. F., 1968. Diurnal variations of eigen-frequencies of the Earth–ionosphere cavity associated with eccentricity of geomagnetic field. Geomagnetizm i ajeronomija. Vol. 8, no. 2, pp. 198–206 (in Russian).
  3. BLIOKH, P. V., NICKOLAENKO, A. P., FILIPPOV, Yu. F., 1977. Global electromagnetic resoances in Earth–ionosphere cavity. Kiev: Naukova dumka Publ. (in Russian).
  4. BLIOKH, P. V., NICKOLAENKO, A. P. and FILIPPOV, Yu. F., 1980. Schumann resonances in the Earth-ionosphere cavity. New York, London, Paris: Peter Peregrinus.
  5. RABINOWICZ, L. M., 1986. On influence of the day–night non-uniformity on ELF fields. Izvestija vuzov. Radiofizika. Vol. 29, no. 429, pp. 635–644 (in Russian).
  6. KIRILLOV, V. V., 1993. Parameters of the Earth–ionosphere waveguide at extremely low frequencies. Problemy difrakcii i rasprostranenija radiovoln. SPb, SPb Univ. press. Iss. 25, pp. 35–52 (in Russian).
  7. KIRILLOV, V. V., 1993. Two dimensional theory of ELF electromagnetic wave propagation in the Earth–ionosphere cavity. Izvestija vuzov. Radiofizika. Vol. 39, no. 12, pp. 1103–1112 (in Russian).
  8. KIRILLOV, V. V., KOPEYKIN, V. N., MUSHTAK, V. K., 1997. ELF electromagnetic waves in the Earth–ionosphere cavity. Geomagnetizm i ajeronomija. Vol. 37, no. 3, pp. 114–120 (in Russian).
  9. KIRILLOV, V. V. and KOPEYKIN, V. N., 2002. Solving a two-dimensional telegraph equation with anisotropic parameter. Radiophys. Quantum Electron. Dec., vol. 45, Iss. 12, pp. 929–941.
  10. PECHONY, O. and PRICE, C., 2004. Schumann resonance parameters calculated with a partially uniform knee model on Earth, Venus, Mars, and Titan. Radio Sci. Oct., vol. 39, Iss. 5, RS5007 (10 p.).  DOI: https://doi.org/10.1029/2004RS003056
  11. PECHONY, O., 2007. Modeling and Simulations of Schumann Resonance Parameters Observed at the Mitzpe Ramon Field Station. Ph.D. Thesis ed. Tel-Aviv University, Israel, March 2007.
  12. PECHONY, O., PRICE, C. and NICKOLAENKO, A. P., 2007. Relative importance of the day–night asymmetry in Schumann resonance amplitude records. Radio Sci. April, vol. 42, Iss. 2, RS2S06 (12 p.).  DOI: https://doi.org/10.1029/2006RS003456
  13. YANG, H. and PASKO, V. P., 2005. Three-dimensional finite-difference time domain modeling of the Earth–ionosphere cavity resonances. Geophys. Res. Lett. Feb., vol. 32, Iss. 3, L03114 (4 p.).  DOI: https://doi.org/10.1029/2004GL021343
  14. YANG, H., PASKO, V. P., YAIR, Y., 2006. Three-dimensional finite difference time domain modeling of the Schumann resonance parameters on Titan, Venus, and Mars.   Radio Sci. Sept., vol. 41, Iss. 2, RS2S03 (10 p.).  DOI: https://doi.org/10.1029/2005RS003431
  15. TOLEDO-REDONDO, S., SALINAS, A., MORENTE-MOLINERA, J. A., MENDEZ, A, FORNIELES, J., PORTÍ, J. and MORENTE, J. A., 2013. Parallel 3D-TLM algorithm for simulation of the Earth–ionosphere cavity. J. Computational Phys. March, vol. 236, pp. 367–379.
  16. NICKOLAENKO, A. P., GALUK, Yu. P. and HAYAKAWA, M., 2016. Vertical profile of atmospheric conductivity that matches Schumann resonance observations. SpringerPlus. Feb., 5:108.  DOI: https://doi.org/10.1186/s40064-016-1742-3
  17. NICKOLAENKO, A. P., GALUK, Yu. P., HAYAKAWA, M., 2015. Vertical profile of atmospheric conductivity corresponding to Schumann resonance parameters. Telecommunications and Radio Engineering. Vol. 74, no. 16, pp. 1483–1495. DOI: https://doi.org/10.1615/TelecomRadEng.v74.i16.80
  18. KUDINTSEVA, I. G., NICKOLAENKO, A. P., RYCROFT, M. J. and ODZIMEK, A., 2016. AC and DC global electric circuit properties and the height profile of atmospheric conductivity. Annals of geophysics. Vol. 59, no. 5, A0545 (15 p.). DOI: https://doi.org/10.4401/ag-6870
  19. HYNNINEN, E. M. and GALUK, Yu. P., 1972. Field of a vertical dipole over spherical Earth with non-uniform along the height ionosphere. Problemy difrakcii i rasprostranenija radiovoln. Iss. 11, pp. 109–120. Leningrad, Lenigrad Univ. press. (in Russian).
  20. GALUK, Yu. P., NICKOLAENKO, A. P. and HAYAKAWA, M., 2015. Comparison of exact and approximate solutions of the Schumann resonance problem for the knee conductivity profile. Telecommunications and Radio Engineering. Vol. 74, no. 15, pp. 1377–1390. DOI: https://doi.org/10.1615/TelecomRadEng.v74.i15.60
  21. ISHAQ, M. and JONES, D. Ll., 1977. Method of obtaining radiowave propagation parameters for the Earth–ionosphere duct at ELF. Electronic Lett. April, vol. 13, Iss. 2, pp. 254–255.
  22. BANNISTER, P. R., 1999. Further examples of seasonal variations of ELF radio propagation parameters. Radio Sci. Vol. 34, no. 1, pp. 199–208. DOI: https://doi.org/10.1029/1998RS900003
  23. NICKOLAENKO, A. P., 2008. ELF attenuation factor derived from distance dependence of radio wave amplitude propagating from an artificial source. Telecommunications and Radio Engineering. Vol. 67, no. 18, pp. 1621–1629. DOI: https://doi.org/10.1615/TelecomRadEng.v67.i18.20
  24. NICKOLAENKO, A. P. and HAYAKAWA, M., 2002. Resonances in the Earth-ionosphere Cavity. Dordrecht, Kluwer
    Academic Publ.
  25. NICKOLAENKO, A. and HAYAKAWA, M., 2014. Schumann Resonance for Tyros (Essentials of Global Electromagnetic Resonance in the Earth–Ionosphere Cavity). Tokyo: Springer. Series XI, Springer Geophysics. DOI: https://doi.org/10.1007/978-4-431-54358-9
  26. PRICE, C., 2016. ELF ElectromagneticWaves from Lightning: The Schumann Resonances. Atmosphere. Vol. 7, Iss. 9. 116 (20 p.). DOI:10.3390/atmos7090116. DOI: https://doi.org/10.3390/atmos7090116
  27. SAMARSKYJ, A. A., 2001. The Theory of difference schemes. N. Y: Marcel Dekker Inc. DOI: https://doi.org/10.1201/9780203908518