• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)


Shvets, AV, Kryvonos, AP

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: alexander_shvets@ukr.net

Language: Russian

At present, the lower ionosphere is the least studied region of the ionosphere. The altitude range and the low concentration of charged particles limit the possibilities of its investigation using radiosondes, balloons, rockets, and satellites. For studies of the lower ionosphere, tweek-atmospherics (tweeks) – ELF–VLF radio waves excited by lightning discharges in the Earth-ionosphere waveguide are used in this work. The authors proposed a method of automatic identification and analysis of tweeks. On the basis of analysis of tweeks recorded in August 2014, the relationship between the regular variations in the height of the ionosphere with the change in the solar zenith angle, which determines the main source of ionization - the radiation of the geocorona at night, was investigated. It is shown that with an increase in the height of the lower boundary of the ionosphere, the rate of tweeks increases, which is associated with a decrease in losses in the ionosphere. The effect of the rise of the lower boundary of the ionosphere during a geomagnetic storm of moderate intensity was detected. Thus, the diagnostic capabilities of the proposed method are demonstrated, which makes it possible to locate thunderstorm foci and to reveal variations in the height of the Earth-ionosphere waveguide along the propagation paths of VLF radio waves excited by lightning discharges from different foci.

Keywords: Earth-ionosphere waveguide, ELF-VLF radio waves, geocorona, geomagnetic storm, lightning location, lower ionosphere, tweek-atmospherics

Manuscript submitted 03.07.2017
PACS 94.20.ws, 94.20.de
Radiofiz. elektron. 2017, 22(3): 14-22

Full text (PDF)

  1. Thomson, N. R., Clilverd, M. A., Mcrae, W. M., 2007.  Nighttime ionospheric D region parameters from VLF amplitude and phase J. Geophys. Res., 112(A7), A07304 (14 p.).  DOI: https://doi.org/10.1029/2007JA012271
  2. Cummer, S. A., Inan, U. S., Bell, T. F., 1998. Ionospheric      D region remote sensing using VLF radio atmospherics, Radio Science, 33(6), pp. 1781–1792. DOI: https://doi.org/10.1029/98RS02381
  3. Han, F., Cummer, S. A., 2011. Midlatitude nighttime D region ionosphere variability on hourly to monthly time scales.         J. Geophys. Res., 115(A10), A09323 (12 p.).
  4. Cheng, Z. Cummer, S. A., 2005. Broadband VLF measurements of lightning-induced ionospheric perturbations. Geo-phys. Res. Lett., 32(8), L08804 (4 p.).
  5. Cheng, Z., Cummer, S. A., Su, H.-T. Hsu, R.-R., 2007. Broadband very low frequency measurement of D region ionospheric perturbations caused by lightning electromagnetic pulses. J. Geophys. Res., 112(A6), A06318 (8 p.).
  6. Shao, X.-M., Lay, E. H., Jacobson, A. R., 2013. Reduction of electron density in the night-time lower ionosphere in response to a thunderstorm, Nature Geoscience, 6, pp. 29–33.
  7. Maurya, A. K., Veenadhari, B., Singh, R, Kumar, S., Cohen, M. B., Selvakumaran, R, Gokani, S., Pant, P., Singh, A. K., Inan, U. S., 2012. Nighttime D region electron density measurements  from ELF-VLF tweek radio atmospherics recorded at low   latitudes. J. Geophys. Res., 117(A11), A11308 (13 p.).  DOI: https://doi.org/10.1029/2012JA017876
  8. Tan, L. M., 2016. Investigation of the morphology and Wait’s parameter variations of the low-latitude D region ionosphere using the multiple harmonics of tweeks. Adv. in Space Res. [online], 57(12), pp. 2444–2451. Available from:  DOI: https://doi.org/10.1016/j.asr.2016.03.030
  9. Kumar, S., Kishore, A., Ramachandran, V., 2008. Higher harmonic tweek sferics observed at low latitude: estimation of VLF reflection heights and tweek propagation distance. Ann. Geophys., 26, pp. 1451–1459. DOI: https://doi.org/10.5194/angeo-26-1451-2008
  10. Ohya, H., Shiokawa, K., Miyoshi, Y., 2008. Development of an automatic procedure to estimate the reflection height of tweek atmospherics. Earth Planets Space, 60(8), pp. 837–843. DOI: https://doi.org/10.1186/BF03352835
  11. Ohya, H., Shiokawa, K., Miyoshi, Y., 2011. Long-term variations in tweek reflection height in the D and lower E regions of the ionosphere. J. Geophys. Res., 116(A10), A10322 (13 p.).  DOI: https://doi.org/10.1029/2011JA016800
  12. Shvets, A. V., Gorishnyaya, Y. V., 2010. A technique for lightning location and estimation of the lower ionosphere parameters using tweek-atmospherics. Radiofizika i elektronika. 1(15)(2), pp. 63–70 (in Russian).
  13. Shvets, A. V. Krivonos, A. P., Serdiuk, T. N., Gorish-nyaya, Y. V., 2013. An inverse problem of recovering parameters of the Earth-ionosphere waveguide excited by a lightning discharge. Zbirnik naukovykh prats’ Kharkivskogo universitetu Povitrianykh sil, 3(36), pp. 84–90 (in Russian).
  14. Shvets, A. V. Serdiuk, T. N., Krivonos, A. P., Gorish-    nyaya, Y. V., 2015. Evaluating parameters of conductivity profile of the lower ionosphere by tweek–atmospherics. Radio-fizika i elektronika, 6(20)(1), pp. 40–47 (in Russian).
  15. Shvets, A. V., Serdiuk, T. M., Gorishnyaya, Y. V., Hobara, Y., Hayakawa, M., 2014. Estimating the lower ionosphere height and lightning location using multimode "tweek"-atmospherics. J. Atmos. Solar-Terr. Phys., 108, pp. 1–9. DOI: https://doi.org/10.1016/j.jastp.2013.11.007
  16. Gorishnyaya, Y. V., 2014. Electron density and lower ionosphere height estimations by results of analysis of multimodal tweek-atmospherics. Radiofizika i elektronika, 5(19)(1), pp. 20–28 (in Russian).
  17. Burton, E. T., Boardman, E. M., 1933. Audio-frequency atmospherics. Proc. IRE, 21, pp. 1476–1494.
  18. Rafalsky, V. A., Shvets, A. V., Hayakawa, M., 1995. One-site distance-finding technique for locating lightning discharges. J. Atmos. Terr. Phys., 57(11), pp. 1255–1261. DOI: https://doi.org/10.1016/0021-9169(95)00011-P
  19. Brundell, J. B., Rodger, C. J., Dowden, R. L., 2002. Validation of single station lightning location technique. Radio Sci., 37(4), pp. 1059–1067. DOI: https://doi.org/10.1029/2001RS002477
  20. Rafalsky, V. A., Nickolaenko, A. P., Shvets, A. V., Hayakawa, M., 1995. Location of lightning discharges from a single station.  J. Geophys. Res., 100(N D10), pp. 20,829–20,838. DOI: https://doi.org/10.1029/95JD01532
  21. Shvets, A. V., Krivonos, A. P., Serdiuk, T. N., Hayakawa, M., 2017. A Technique for Automatic Monitoring the Lower Ionosphere and Lightning Location by Tweek-Atmospherics. Int. J. of Electronics and Applied Res. (IJEAR), 4(1). Accepted for publicationAccepted to be published .
  22. Shvets, A. V., Krivonos, A. P., Ivanov, V. K., 2016. A complex for multicomponent measurements of ELF–VLF electro-magnetic fields. Radiofizika i elektronika., 7(21)(4), pp. 49–55 (in Russian).
  23. Ester, M., Kriegel, H.-P., Sander, J., Xu, X., 1996. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Proc. 2nd Int. Conf. Knowledge Discovery and Data Mining (KDD-96). Portland, Oregon, August 02–04, 1996. Pp. 226–231. 
  24. World Data Center for Geomagnetism, Kyoto. [online]. Available from: http://wdc.kugi.kyoto-u.ac.jp/index.html
  25. Yedemsky, D. Ye., Ryabov, B. S., Shchokotov, A. Yu., Yarotsky, V. S., 1992. Experimental investigation of the tweek field structure, Adv. Space Res., 12(6), pp. 251–254. DOI: https://doi.org/10.1016/0273-1177(92)90066-7
  26. Danilov, A. D., 1989. Popular aeronomy. Leningrad: Gidrometeoizdat (in Russian).
  27. Gusev, V. D., ed. 1991. Contemporary methods of studying dynamic processes in ionosphere. Kishinev: Shtinitsa Publ. (in Russian).