• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)


Kolosov, SV, Kuraev, AA, Zaitseva, IE

Belarusian State University of Informatics and Radioelectronics
6 P. Brovki Street, Minsk 220013 Belarus
E-mail: kolosov@bsuir.by

Language: Russian

The article describes a new type electronic device - gyroton on a corrugated resonator. In this device there is no spatial grouping of the electron beam, but it is possible to achieve a high conversion factor of the power of the electron beam into the power of the electromagnetic rotating wave. Straight-line at the input of the device, the electron beam gives its longitudinal energy to the same wave with an efficiency of more than 80 % due to its initial deviation from the axis of the slowed down TM11-wave. The me-thod described in the article reduces the 3D-problem to the 1D-problem, which increases the speed and accuracy of the solution of the boundary value problem. The developed mathematical model is the basis for a computer program for calculating and optimizing the interaction of relativistic electron flows with the fields of irregular round waveguides Gyro-K, which is a part of the software complex KEDR.
The developed mathematical model of interaction processes of the relativistic electron beam with the fields of irregular circular waveguides and resonators makes it possible to carry out a theoretical analysis of the operation of a gyrotron generator with a corrugated resonator. As a result, the article demonstrated the possibility of providing an electronic efficiency of more than 80% and an output power of up to 30 MW for the developed gyroton mathematical model on a corrugated resonator.

Keywords: gyroton, irregular waveguide., microwave devices

Manuscript submitted 29.06.2016
PASC 84.40.Ik
Radiofiz. elektron. 2017, 22(3): 37-46

Full text (PDF)

  1. Kolosov, S. V., Kurayev, A. A., 1973. Nonlinear radiation and conversion of longitudinal energy of relativistic electronic beam in the strong revolving electromagnetic. Radio Eng. Electron. (USSR), 18(12). pp. 2558–2566.
  2. Kurayev, A. A., 1982. To design the amplifier on relativistic electron beam with magnetic modulator. Radio Eng. Electron. (USSR), 27(6), pp. 1231–1234.
  3. Kurayev, A. A., Sinitsyn, A. K., Slepyan, A. Ya., 1996. Gyroton. Int. J. Electronics. 80(4). pp. 603–610. DOI: https://doi.org/10.1080/002072196137228
  4. Kolosov, S. V., Kurayev, A. A., Lavrenov, A. A., 2002. Trave-ling wave gyroton with double mode operations. In: 3rd IEEE Int. Vacuum Electronics Conf. (IVEC-2002). Monterey, USA, 23–25 April 2002. Publ. by Institute of Electrical & Electronics Engineers(IEEE).
  5. Kolosov, S. V., Kurayev, A. A., 1998. Nonlinear theory of gyroresonance devices with the irregular electrodynamic system. Electromagnetic waves and electronic systems, 3(1), pp. 35–44.
  6. Kolosov, S. V., Kurayev, A. A., Lavrenov, A. A., 2004. Influence of the space charge fields in traveling wave gyrotons. In: 14th Int. Crimean Microwave Conf. Microwave and Telecommunication Technology (CriMiCo 2004): proc. (Sevastopol, Ukraine, Sept. 13–17 2004).
  7. Kolosov, S. V., Lavrenov, A. A., 2006. Traveling-Wave Tubes with a Combined Gyroresonance – Gyroton Interaction between E11 and H11 Waves and Spiralized Electron Beam in a Corrugated Waveguide. J. Communications Technology and Electronics, 6, pp. 693–699. DOI: https://doi.org/10.1134/S106422690606012X
  8. Kolosov, S. V., Kurayev, A. A., Lavrenov, A. A., 2006.   Microwave Source with Goffered Cavity. In: 7th IEEE Int. Vacuum Electronics Conf. (IVEC-2006): proc. (Monterey, USA, April 25–27, 2006).DOI: https://doi.org/10.1109/IVELEC.2006.1666293
  9. Kolosov, S. V., Kurayev, A. A., Lavrenov, A. A., 2006.   Microwave Generator on goffered Resonator. In: 16th Int. Crimean Microwave Conf. Microwave and Telecommunication Technology (CriMiCo 2006): proc. (Sevastopol, Ukraine, Sept. 11–15 2006).
  10. Kaufman, I., Oltman, G., 1965. Harmonic Generation by Electron Beam Pattern Motion. IEEE Trans. Electron Devices, 12(1), pp. 31–39.DOI: https://doi.org/10.1109/T-ED.1965.15448
  11. Budker, G. I., Karliner, M. M., Makarov, I. G., Morozov, S. N., Nezhevenko, O. A., Ostreiko, G. N., Shekhtman, I. A., 1975. Microwave electron discharge device. U. S. Pat. 3.885.193.
  12. Budker, G. I., Karliner, M. M., Makarov, I. G., Morozov, S. N., Nezhevenko, O. A., Ostreiko, G. N., Shekhtman, I. A., 1978. The Gyrocon, a Highly Efficient Converter of Energy from Powerful Relativistic Beams for Microwave Supplies in Charged-Particle Accelerators. At. Energ., 44(5), pp. 459–466.DOI: https://doi.org/10.1007/BF01119260
  13. Karliner, M. M., Kozyrev, E. V., Maksimov, A. Yu., Nezhe-venko, O. A., Ostreyko, G. N., 1986. Electron device – magnicon. USSR Autorʼs Certificate 1110335 A (in Russian).
  14. Nezhevenko, O. A., 1994. Gyrocons and Magnicons: Microwave Generators with Circular Deflection of the Electron Beam. IEEE Trans. Plasma Sci., 22(5), pp. 756–772.DOI: https://doi.org/10.1109/27.338292
  15. Bratman, V. L., Ginzburg, N. S., Nusinovieh, G. S., Petelin, M. I., Yulpatov, V. K., 1979. Cyclotron and Synchrotron masers, Relativistic UHF electronics. Gorkii: I. Appl. Ph. AS USSR. Vol. 1.
  16. Sveshnikov, A. G., 1963. Proof of the method of calculation of the propagation of electromagnetic oscillations in irregular waveguides. Comput. Math. Math. Phys., 3(2), pp. 314–326.
  17. Ludeking, L., Smithe, D., Bettenhausen, M., Hayes, S. Magic User’s Manual. [pdf] Mission Research Corporation. Available from: http://www.dtic.mil/get-tr-doc/pdf?AD=ADA369169 [March, 1999].
  18. MAFIA, User’s Guide, Version 4.0, CST. GmbH, Darmstadt, Germany.
  19. Tarakanov, V. P., 1992. User’s manual for Code KARAT. VA: Berkley Research Associates.
  20. Botton, M., Antonsen, T. M., Levush, B., Nguyen, K. T., Vlasov, A. N., 1998. MAGY: a time-dependent code for simulation of slow and fast microwave devices. IEEE Trans. Plasma Sci., 26(3), pp. 882–892.DOI: https://doi.org/10.1109/27.700860
  21. Kravchenko, V. F., Kurayev, A. A., Pustovoit, V. I., Sinitsin, A. K, 2005. Irregular waveguide in UHF electronics. Electro-magnetic waves and electron systems, 10(8), pp. 51–58.
  22. Kolosov, S. V., Kuraev, A. A., Sinitsyn, A. K., Aksenchik, A. V., 2012. Computer software complex CEDR. Certificate of regist-ration of the computer program N 384. Right holder Bela-rusian State University of Informatics and Radioelectronics (BSUIR). Entered in the register of the National Center for Intellectual Property of the Republic of Belarus 07.02.2012 (in Russian).