• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

GAS-DISCHARGE LASERS OF THE TERAHERTZ RANGE

Dzyubenko, MI, Kamenev, YE, Radionov, VP
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: mid41@ukr.net

https://doi.org/10.15407/rej2017.03.058
Language: Russian
Abstract: 

The terahertz (THz) frequency range now attracts much attention of researchers and consumers in connection with many possibilities of using it for solving a number of practical problems in science, technology and medicine. Therefore, the development of new sources of radiation and the improvement of the existing ones are actual. The results of experimental and theoretical studies of gas-discharge THz-lasers, and numerous studies of the features of their work have been summarized in the paper. A number of new developments aimed at increasing the efficiency and expanding the functionality of gas-discharge terahertz lasers have been presented. New methods of pumping gas-discharge lasers, which were developed, have been presented. We have proposed new technical solutions which allow increasing the power and efficiency of the laser by optimizing the synthesis of the active substance and eliminating the negative impact of synthesis by-products. New methods for modeling the shape of laser pulses in lasers pumped with pulsed current and alternating low-frequency current have been presented. New types of laser resonators and new varieties of mirrors have been proposed and created and they have been presented in this work. Laser resonators with mirrors that do not require accurate alignment have been developed. Partially transparent mirrors, in the form of flat periodic structures that combine the functions of concave mirrors and focusing lenses, have been proposed. These mirrors can reduce the diffraction loss of laser radiation. Resonators with new principles of smooth regulation of radiation output from them, have been presented. Multifrequency lasers have been developed. Systems for the smooth adjustment of the frequency of electromagnetic laser radiation, in which adjustment is carried out without the use of frequency measuring equipment, have been designed for these lasers. All these new developments, presented here, have made it possible to improve the parameters of terahertz lasers and to expand their field of application. Some applications of THz lasers, in particular medical applications and in the field of measurement have been presented. New ways of measuring the refractive indices of various substances and materials in the THz range, using the developed lasers, have also been presented in this work.

Keywords: active substance, gas-discharge laser, resonator, terahertz range

Manuscript submitted 11.07.2017
PACS 42.60.By
Radiofiz. elektron. 2017, 22(3): 58-80

Full text (PDF)

References: 
  1. Gebbie, H. A., Stone, X. W., Findlay, F. D., 1964. Stimulated Emission Source at 0.34 Millimeter Wave-Length. Nature, 202(4933), p. 685.
  2. Hocker, L. O., Javan, A., 1968. Absolute friquency measurements on new СW DCN submillimeter laser lines. Appl. Phys. Lett., 12(8), pp. 124–125.
  3. Svich, V. A., Dyubko, S. F., Kuzmitchov, V. M., Shulga, V. M., 2004. Investigations in the framework of the problem of mastering the millimeter and submillimeter wavelength ranges performed at the Department of Radiophysics. Physical surface engineering, 2(1–2), pp. 79–95 (in Russian).
  4. Epishin, V. A., Pokormyakho, N. G., Svich, V. A., Topkov, A. N., Urinson, A. S., Yundev, D. N., 1981. Waveguide submillimeter laser interferometer for plasma diagnostics. Pribory i tekhnika eksperimenta, 1, pp. 149–151 (in Russian).
  5. Gorbunov, E. P., Kuleshov, E. M., Nesterov, P. K., Skosyrev, Yu. V., Khilil', V. V., 1994. Laser interferometer-polarimeter of submillimeter range for measurement of poloidal field on Tokamak 15. Fizika plazmy, 20(1), pp. 17–19 (in Russian).
  6. Kiseliov, V. K., Makolinets, V. I., Mitryaeva, N. A., Radio-nov, V. P., 2012. Application of terahertz laser technology to investigate the influence of HFO radiation on the tumor process. Radiofizika i elektronika, 3(17)(2), pp. 95–101 (in Russian).
  7. Kiselev, V. K., Kuleshov, E. M., Laptiy, V. K., 2005. Investigation of a gas-liquid HCN laser of the terahertz frequency range with a hollow cathode of anomalous secondary emission. In: V. M. Yakovenko, ed. 2005. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ., 10(2), pp. 315–320 (in Russian).
  8. Kamenev, Yu. E., 1999. HCN laser with cathode hollow. Kvantovaya elektronika, 26(3), pp. 269–270 (in Russian).
  9. Valitov, R. A. ed., 1969. The technique of submillimeter waves. Мoscow: Sovetskoe radio Publ. (in Russian).
  10. Dakhov, N. F., Kamenev, Yu. E., Kiselev, V. K., Kuleshov, E. M., Radionov, V. P., 1998. Submillimeter gas-discharge HCN laser with internal film electrodes. In: V. M. Yakovenko, ed. 1998. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ., 3(2), pp. 64–65 (in Russian).
  11. Dahov, M. F., Kisel'ov, V. K., Kuljeshov, Je. M., Radionov, V. P. Gas discharge submillimeter laser with external electrodes. Ukraine. Pat. 60384 (in Ukrainian).
  12. Kiselev, V. K., Kuleshov, E. M., Radionov, V. P., Dahov, N. F., Janovskij, M. S., Makolinec, V. I., Leont'eva, F. S., Shevcov, B. N., Grashhenkova, T. N., 2002. Hyper-high-frequency laser device for biomedical research. In: V. M. Yakovenko, ed. 2002. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ., 7(1), pp. 133–136 (in Russian).
  13. Dzjubenko, M. I., Litvinenko, L. N., Shevchenko, V. V., Dal'chenko, P. G., Danilevich, S. B., Mishhenko, V. P., Pjatikop, A. P., 1979. Creation of continuous lasers operating in the wave band from 0.05 to 0.5 mm with an output power of up to 500 mW for the diagnosis of high-temperature plasma: report on R & D "Dunaj". Kharkov: IRE NAS of Ukraine Publ. GR no. 77.076.126 (in Russian).
  14. Kuleshov, E. M., Kamenev, Ju. E., Radionov, V. P., 1989. Inductive high-frequency discharge in sub-mm range lasers. In: 2nd Vsesojuznoe soveshhanie "High-frequency discharge in wave fields": proc. Kuibyshev, 1989. (in Russian).
  15. Dahov, M. F., Kisel'ov, V. K., Kuljeshov, Je. M., Radionov, V. P., 2003. Gas-discharge submillimeter laser. Ukraine. Pat. 55720А (in Ukrainian).
  16. Kiseliov, V. K., Radionov, V. P., Dachov, N. F., 2010. Influence of synthesis time of the lasant and intensity of on          terahertz gas-discharge HCN-laser parameters. Telecommunication and Radio Еngineering, 69(14), pp. 1277–1283.
  17. Kiseliov, V. K., Radionov, V. P., 2007. Terahertz gas-discharge laser with additional dicharge section. In: 2007 Int. Kharkov Symp. Physics and Engineering of Millimeter and Sub-Millimeter Waves (MSMW): proc. Kharkov, Ukraine,  25–30 June 2007. IEEE.
  18. Kisel'ov, V. K., Radionov, V. P., 2009. Gas-discharge submilli-meter laser. Ukraine. Pat. 86298 (in Ukrainian).
  19. Dakhov, N. F., Kiselev, V. K., Kuleshov, E. M., Radionov, V. P., 2003. Biomedical hyperhigh-frequency laser with thermal stabilization of the discharge tube. Proc. XX Int. Scientific and Practical Conf. Application of Lasers in Medicine and Biology. Yalta, Ukraine, 8–11 oct. 2003 (in Russian).
  20. Mathias, L. E., Crocker, A., Wills, M. S., 1965. Laser oscillations at submillimetre wavelengths from pulsed gas discharges in compounds of hydrogen, carron, and nitrogen. Electron. Lett., 1(2), pp. 45–46.
  21. Sachar, V., Braner, E., 1967. Time dependence of the power otput at 337m in a CN laser. Appl. phys. lett., 10(8), pp. 232–234.
  22. Kiseliov, V. K., Radionov, V. P., 2010. Phenomenon of pulse lasing bifurcation in the alternating current pumped HCN     laser. Telecommunication and Radio Еngineering, 69(14), pp. 1293–1299.
  23. Kiseliov, V. K., Radionov, V. P., 2011. Graphical Modeling of THz Gas-Discharge Laser Radiation Pulse Shape. Radio-fizika i elektronika, 2(16)(3), pp. 95–101 (in Russian).
  24. Shestopalov, V. P., Kirilenko, A. A., Masalov, S. A.,    Sirenko, Yu. K., 1986. Diffraction gratings. Resonance scattering of waves. Vol. 1. Kiev: Naukova dumka Publ. (in Russian).
  25. Kamenev, Yu. E., Kuleshov, E. M., Radionov, V. P., Filimo-nova, A. A., 1994. Depolarisation of the output radiation of an HCN laser. Quantum Electron., 24(10), pp. 878–879.
  26. Gorshunov, B. P. Lebedev, S. P., Masalov, S. A., 1984. The use of metal gratings as phase plates of the submillimeter range. Zh. Tekh. Fiz., 54(4), pp. 825–827 (in Russian).
  27. Baron, T., Euphrasie, S., Mbarek, S. B., Vairac, P., Cretin, B., 2009. Design of metallic mesh absorbers for high bandwidth electromagnetic waves. Progress In Electromagnetics Research C, 8, pp. 135–147. DOI:https://doi.org/10.2528/PIERC09052204
  28. Gurin, О. V., Degtyarev, А. V., Legenkyi, M. N., Маslov, V. А., Svich, V. А., Senyuta, V. S., Тоpkov, А. N., 2014. Generation of transverse modes with azimuthal polarization in a terahertz band waveguide laser. Telecommunications and Radio Engineering, 73(20), pp. 1819–1830.
  29. Verslegers, L., Catrysse, P. B., Yu, Z., White, J. S., 2009. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett., 9(1), pp. 235–238.
  30. Lin, H.-A., Huang, C.-S., 2016. Linear variable filter based on a gradient grating period guided-mode resonance filter. IEEE Photonics Technol. Lett., 28(9), pp. 1042–1045.
  31. Shi, H., Wang, C., Du, C., Luo, X., Dong, X., Gao, H., 2005. Beam manipulating by metallic nano-slits with variant widths. Optics Express, 13(18), pp. 6815–6820.
  32. Dzjubenko, M. I., Maslov, V. O., Radionov, V. P., 2017. Azimuthal output mirror of laser resonator. Ukraine. Pat. 115126 (in Ukrainian).
  33. Dzyubenko, M. I., Maslov, V. A., Radionov, V. P., 2016. Applying of the flat circular metal gratings as spherical output mirrors of terahertz lasers. In: Proc. Int. Symp. Physics and Engineering of mm and Sub-mm Waves (MSMW-16). Kharkov, Ukraine, June 2016.
  34. Kuleshov, E. M., Kamenev, Ju. E., Radionov, V. P., Filimo-nova, A. A., 1994. Submillimeter HCN laser corner reflectors. In: Proc. Int. Symp. Physics and Engineering of mm and Sub-mm Waves. Kharkov, Ukraine, 1994 (in Russian).
  35. Kamenev, Yu. E., Kuleshov, E. M., 1995. Characteristics of the application of retroreflectors in submillimetre laser. Quantum Electron., 25(8). Р. 817–818.
  36. Radionov, V. P., Kiseliov, V. K., 2014. Application of conical 90-degree reflectors for solving the problem of mirror alignment in terahertz-range lasers. Quantum Electron., 44(10), pp. 981–983.
  37. Radionov, V. P., Kiseliov, V. K., 2015. Conical 90° Mirrors for Terahertz Laser Resonator. Telecommunications and    Radio Engineering,74(4), pp. 337–343.
  38. Kamenjev, Ju. Ju., Filimonova, G. O., 2007. Оutput mirror of laser resonator. Ukraine. Pat. 78870 (in Ukrainian).
  39. Kamenev, Yu. E., Маsаlоv, S. А., Filimonova, А. А., 2006. HCN laser with an adaptive output mirror. Quantum Electron., 36(9), pp. 849–852.
  40. Kamenev, Ju. E., Masalov, S. A., Filimonova, A. A., 2006. HCN laser with hybrid output mirror. In: V. M. Yakovenko, ed. 2006. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ., 11(2), pp. 270–274 (in Russian).
  41. Andrenko, S. A., Kamenev, Ju. E., 2011. Application of HCN-laser for measuring phase characteristics of one-dimensional wire gratings. Radiofizika i elektronika, 2(16)(1), pp. 50–53 (in Russian).
  42. Kisel'ov, V. K., Radyonov, V. P., 2016. Оutput mirror of laser resonator. Ukraine. Pat. 111353 (in Ukrainian).
  43. Kamenev, Ju. E., Kuleshov, E. M., Kiselev, V. K., Litvinov, D. D., Polupanov, V. N., 1984. Waveguide gas laser. USSR Autorsʼ Certificate 111,165,7 (in Russian).
  44. Kamenev, Ju. E., Kuleshov, E. M., 1989. Subm-lasers with variable quasi-optical coupling. In: E. M. Kuleshov, ed. 1989. Quasioptic equipment of mm and submm wave bands. Kharkov: IRE AS of UkrSSR Publ. Pp. 156–162 (in Russian).
  45. Kamenev, Yu. E., Маsаlоv, S. А., Filimonova, А. А., 2005. Application of a submillimetre HCN laser for determining the electrodynamic parameters of one-dimensional wire gratings Quantum Electron., 35(4), pp. 375–377.
  46. Kisel'ov, V. K., Radionov, V. P., 2010. Laser with smooth regulation of radiation output from the resonator. Ukraine. Pat. 91610 (in Ukrainian).
  47. Kisel'ov, V. K., Radionov, V. P., 2014. Laser with smooth regulation of radiation output from the resonator. Ukraine. Pat. 105802 (in Ukrainian).
  48. Radionov, V. P., Maslov, V. O., 2016. Laser with smooth regulation of radiation output from the resonator. Ukraine. Pat. 110672 (in Ukrainian).
  49. Dzjubenko, M. I., Maslov, V. O., Radionov, V. P., 2016. Laser with smooth regulation of radiation output from the resonator. Ukraine. Pat. 113216 (in Ukrainian).
  50. Dzyubenko, M. I., Maslov, V. A., Radionov, V. P., 2016. Terahertz waveguide laser with smooth adjustment of feedback. In: Proc. 7th Int. Conf. Advanced Optoelectronics and Lasers (CAOL*2016). Odessa, Ukraine, 12–15 Sept. 2016.
  51. Korobov, A. M., Radyonov, V. P., Kamenev, Ju. E., 1992. Laser. USSR Autorsʼ Certificate 182,983,2 (in Russian).
  52. Dzyubenko, M. I., Maslov, V. A., Radionov, V. P., 2016. Laser resonator with infinitely adjustable of light output. In: 13th Int. Conf. Laser and Fiber-optical Networks Modeling, (LFNM*2016). Odessa, Ukraine, 13–15 Sept. 2016.
  53. Dzjubenko, M. I., Maslov, V. O., Radionov, V. P., 2017. Laser with smooth regulation of radiation output from the resonator. Ukraine. Pat. 114127 (in Ukrainian).
  54. Kisel'ov, V. K., Radionov, V. P., 2007. Two-frequency annular gas-discharge laser. Ukraine. Pat. 78871 (in Ukrainian).
  55. Kamenev, Ju. E., Kuleshov, E. M., Lebedenko, A. N., 1984. Multifrequency emission from submillimeter lasers. Kvantovaja elektronika., 11(1), pp. 213–214 (in Russian).
  56. Kamenev, Ju. E., Kuleshov, E. M., 1987. Two-frequency stimulated emission of radiation with orthogonal polarizations from an HCN laser. Kvantovaja elektronika., 14(12), pp. 236–238 (in Russian).
  57. Kamenev, Ju. E., Kuleshov, E. M., 1989. Submillimeter laser with internal amplitude modulation. USSR. Pat. 1127515 (in Russian).
  58. Kisel'ov, V. K., Radionov, V. P., Nesterov, P. K., 2014. Multi-frequency terahertz laser. Ukraine. Pat. 106643 (in Ukrainian).
  59. Radionov, V. P., Nesterov, P. K., Kiseliov, V. K., 2015. Methods of producing multifrequency generation in the laser terahertz resonator. Radiofizika i elektronika., 6(20)(2),  pp. 78–82 (in Russian).
  60. Radionov, V. P., 2005. Submillimeter laser with continuous tuning of frequency of radiation within the limits of cutout signal multiplication. In: V. M. Yakovenko, ed. 2005.           Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ., 10(1), pp. 150–153 (in Russian).
  61. Kisel'ov, V. K., Dzjubenko, M. I., Radyonov, V. P., 2013. Method of determining refractive index of transparent substances. Ukraine. Pat. 103393 (in Ukrainian).
  62. Dzyubenko, М. I., Kiseliov, V. K., Radionov, V. P., 2015. Resonator Methods of Measuring Refractive Index of a Transparent Substance in the Terahertz Band. Telecommunications and Radio Engineering, 74(8), pp. 725–733.
  63. Dzjubenko, M. I., Radionov, V. P., 2017. Laser method for measuring the refractive index of transparent substances in the terahertz range. Ukrai'ns'kyj metrologychnyj zhurnal, 1, pp. 11–14 (in Russian).
  64. Kiselev, V. K., Kuleshov, E. M., Radionov, V. P., Dahov, N. F., Janovskij, M. S., Makolinec, V. I., Leont'eva, F. S., Shevcov, B. N., Grashhenkova, T. N., 2002. Hyper-high-frequency laser installation for biomedical research. In: V. M. Yakovenko, ed. 2002.           Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 7(1), pp. 133–136 (in Russian).
  65. Kamenev, Yu. E., Kuleshov, E. M., Kiselev, V. K., Makoli-nets, V. I., Timoshenko, O. P., Shevtsov, B. N., 1994. Consideration of the possibility of using coherent EHF radiation to regulate the intensity of metabolic reactions in the body. In: A. A. Vertiy, ed. 1994. Application of radio waves mm and submm ranges. Kharkov: IRE NAS of Ukraine Publ. Pp. 47–49 (in Russian).
  66. Kolesnikov, V. G., Dreval', N. V., Kondakova, A. K., Kame-nev, Yu. E., Korzh, V. G., 2007. Interaction of macromolecular structures of erythrocytes with electromagnetic radiation of the terahertz range of radio waves. Dermatologija ta venerologija, 2(36), pp. 9–14 (in Russian).
  67. Skolozhabskij, A. A., Kiselev, V. K., Mizrahi, S. V., Radio-nov, V. P., Tihona, G. S., Bezvesil'naja, A. V., 2010. Study of the ultrastructural morphology of a bioobject under irradiation conditions Zagal'na patologija ta patologichna fiziologija, 5(4), pp. 80–93 (in Russian).
  68. Kiseliov, V. K., Makolinets, V. I., Mitryaeva, N. A., Radio-nov, V. P., 2012. Application of terahertz laser technology to investigate the influence of HHF radiation on the tumor process. Telecommunications and Radio Engineering, 71(17), pp. 1617–1626.
  69. Kiseliov, V. K., Makolinets, V. I., Mitryaeva, N. A., Radionov, V. P., 2012. Application of terahertz lasers setup for the investigation of the influence of HHF-radiation on the tumor processes. In: The 37th Int. Conf. Infrared, Millimeter and  Terahertz Waves (IRMMW-THz). Wollongong, Australia, 23–28 Sept. 2012.
  70. Kiseliov, V. K., Makolinets, V. I., Mitryaeva, N. A., Radionov, V. P., 2012. The research of the terahertz radiation influence on the tumor processes. In: The 2nd Int. Conf. Terahertz and Microwave radiation: Generation, Detection and Applications (TERA 2012): Abstract book. Moscow, Russia, 20–22 June 2012.