• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)


Hnatovskyi, AV, Provalov, SA

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: provalov@ire.kharkov.ua

Language: Russian

The development and improvement of operational characteristics of communication lines, radiolocation, navigation, surface overview, remote control and warning systems at the airports and at the stations is provided by the development of shorter-wave ranges. Designing new millimeter and submillimeter waveband radio complexes requires not only the modernization of existing antennas but also the creation of new antennas classes. Diffraction radiation antennas, for example. One of the basic problems in antenna engineering is the formation of required amplitude-phase distribution (APD) of electromagnetic field on antenna aperture that provides the given operational characteristics. The known techniques of APD forming at the aperture of diffraction radiation antennas are acceptable for aperture not less than 50 wavelengths. In this paper the possibility of forming the amplitude distribution with symmetrically falling edges at the 10...50 wavelength aperture by adding an additional segment of dielectric waveguide is investigated. The additional segment of dielectric waveguide changes the sequential system of radiating elements feeding into a sequential-parallel one. The efficiency of energy and APD transformation for different values of dielectric waveguide – dielectric waveguide and dielectric waveguide – grating coupling factor is evaluated. The results can be applied in the design of millimeter antenna systems and functional unit based on open transmission lines.

Keywords: amplitude distribution, coupled dielectric waveguides, diffraction radiation

Manuscript submitted 21.07.2017
PACS 84.40.Az
Radiofiz. elektron. 2017, 22(4): 3-10
Full text (PDF)

  1. Meriakri, V. V., 2002. The state and prospects of the development of submillimeter transmission lines and devices based on them. Zarubezhnaya radioelektronika, 12, pp. 3–7 (in Russian).
  2. Vzyatyishev, V. F., Krutskih, V. V., 2006. Class of milli-meterwave devices and circuits based on half shielded dielectric waveguides. Radiotekhnika, 3, pp. 84–96 (in Russian).
  3. Myirovitskiy, D. I., Bugadyan, I. F., Dubrovin, V. F., 1983. Microwave optics and holography. Мoscow: Nauka Publ. (in Russian).
  4. Andrenko, S. D., Belyaev, V. G., Provalov, S. A., Sidorenko, Yu. B., Shestopalov, V. P., 1977. Surface into volume wave transformation in physics and techniques of millimeter and submillimeter waves. Vestnik Аkad. Nauk UkrSSR, 1, pp. 8–12 (in Russian).
  5. Andrenko, S. D., Devyatkov, N. D., Shestopalov, V. P., 1978. Millimiter-wave antenna array. Dok. Akad. Nauk SSSR, 240(6), pp. 1340–1343 (in Russian).
  6. Klimov, A. I., Merkulov, K. B., Ostankov, A. V., Paster-
    nak, Yu. G., Yudin, V. I. 1999. Experimental investigation of antenna characteristics of grating with two grooves and di-electric layer. Pribory i tekhnika eksperimenta, 4, pp. 113–116 (in Russian).
  7. Melezhik, P. N., Razskazovskiy, V. B., Reznichenko, N. G., Zuykov, V. A., Andrenko, S. D., Sidorenko, Yu. B., Provalov, S. A., Varavin, A. V., Usov, L. S., Chmil, V. M., Muskin, Yu. N., 2008. Millimeter-wave semiconductor coherent radar for airport ground traffic control. Science and Innovations, 4(3), pp. 5–13 (in Russian).
  8.  Hammad, H. F., Antar, Y. M. M., Freundorfer, A. P., Sayer, M., 2004. A new dielectric grating antenna at millimeter wave frequency. IEEE Trans. Antennas Propag., 52(1), pp. 36–44. DOI: https://doi.org/10.1109/TAP.2003.820977
  9. Yevdokimov, A. P., Kryizhanovskiy, V. V., 1996. A new trend in antenna array techniques. Radioelektronika, 9, pp. 54–61 (in Russian).
  10. Lee, J. W., Eom, H. J., Park, K. H., Chun, W. J., 2001. TM-wave radiation from grooves in dielectric-covered ground plane. IEEE Trans. Antennas Propag., 49(1), pp. 104–105.DOI:  https://doi.org/10.1109/8.910536
  11. Provalov, S. A., 2010. Surface into volume waves converter based on coupled lines. Elektromagnitnye volny i elektronnye sistemy, 15(4), pp. 40–45 (in Russian). 
  12. Andrenko, S. D., Sidorenko, Yu. B., Provalov, S. A., 1984. Energy radiation characteristics of dielectric waveguide-grating system. In: V. P. Shestopalov, ed. 1984. Raspro-stranenie i difraktsiya radiovoln v mm i submm diapazonah. Kiev: Naukova dumka Publ., pp. 203–208 (in Russian).
  13. Yariv, A., 1973. Coupled-mode theory for guided-wave optics. Quantum electron., 9(9), pp. 919–933. DOI: https://doi.org/10.1109/JQE.1973.1077767
  14. Barnoski, M. K. ed., 1977. Introduction to Integrated Optics. Translated from English and ed. by T. A. Shmaonov. Мoscow: Mir Publ. (in Russian).
  15. Steynshleger, V. B. ed., 1960. Low-loss waveguide transmission lines. Moscow: Inostrannaya literatura Publ. (in Russian).
  16. Tseytlin, N. M. ed., 1985. Techniques of measurement of microwave antennas characteristics. М.: Radio i svyaz' Publ. (in Russian).
  17. Shestopalov, V. P., Kirilenko, A. A., Masalov, S. A., Sirenko, Yu. K., 1986. Resonance scattering ot waves. Vol. 1. Diffraction
    gratings. Kiev: Naukova dumka Publ. (in Russian).
  18. Steshenko, S. A., Kirilenko, A. A., Chistyakova, O. V., 2005. Rigorous 2D model of surface into volume waves transformation effect. In: V. M. Yakovenko, ed. 2005. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 10(1), pp. 30–38 (in Russian).