• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

INFLUENCE OF AXIAL GUIDING MAGNETIC FIELD ON AMPLIFICATION OF WAVES IN A PLASMA-BEAM SUPERHETERODYNE FREE ELECTRON LASER OF DOPPLERTRONE TYPE

Lysenko, AV, Oleksiienko, GA, Pavlov, AV
Organization: 

Sumy State University
2, Rymskogo-Korsakova st., 40007 Sumy,Ukraine
E-mail: lysenko_@ukr.net

https://doi.org/10.15407/rej2017.04.055
Language: Russian
Abstract: 

The research subject is the amplification characteristics of the plasma-beam superheterodyne free-electron laser of the dopplertron type. The purpose is to theoretically investigate the influence of longitudinal magnetic field on the wave amplification in such a device in order to find the optimal operation mode.
As initial we use the quasihydrodynamic equation, the continuity equation and Maxwell’s equations. The motion problem is solved by means of the modernized method of averaged characteristics. The problem of electromagnetic self-fields excitation is solved through the slowly varying amplitudes method.
We have analyzed the influence of the axial guiding magnetic field on the waves dynamics in a plasma-beam superheterodyne free electron laser with Dopplertron pump in the framework of the cubic nonlinear approximation. We found out that the intensity of electromagnetic radiation increases, when the intensity of the axial guiding magnetic field decreases right up to a critical value. We found the critical value of magnetic field strength, and the saturation levels of electromagnetic waves.
We have demonstrated that the investigated free electron laser can be used as a powerful amplifier of electromagnetic radiation in the millimeter wavelength range.

Keywords: axial guiding magnetic field, beam-plasma instability, parametric resonance, superheterodyne free electron laser

Manuscript submitted 04.10.2017
PACS 41.60.Cr; 52.35.Mw
Radiofiz. elektron. 2017, 22(4): 55-61
Full text (PDF)

References: 
  1. Kulish, V. V., 2011. Hierarchic Electrodynamics and Free Electron Lasers: Concepts, Calculations, and Practical Applications. CRC Press. DOI: https://doi.org/10.1201/b11247
  2. Saeedkia, D., 2013. Handbook of Terahertz Technology for Imaging, Sensing and Communications. Elsevier. DOI: https://doi.org/10.1533/9780857096494
  3.  Redo-Sanchez, A., Laman, N., Schulkin, B., Tongue, T., 2013. Review of Terahertz Technology Readiness Assessment and Applications. J. Infrared Millim. Terahertz Waves, 34(9), pp. 500–518. DOI: https://doi.org/10.1007/s10762-013-9998-y
  4. Kotsarenko, N. I., Kulish, V. V., 1980. The superheterodyne amplification of electromagnetic waves in a beam-plasma system. Radiotekhnika i Elektronika, 25(11), pp. 2470–2471 (in Russian).
  5. Kulish, V. V., Lysenko, A. V., Koval, V. V., 2010. Multiharmonic Cubic-nonlinear theory of plasma-beam superheterodyne free-electron lasers of the dopplertron type. Plasma Phys. Rep., 36(13), pp. 1185–1190. DOI: https://doi.org/10.1134/ S1063780X10130167
  6. Kulish, V. V., Lysenko, A. V., Koval, V. V., 2009. On the theory of a plasma-beam superheterodyne free-electron laser with H-ubitron pumping. Tech. Phys. Lett., 35(8), pp. 696–699. DOI: https://doi.org/10.1134/S1063785009080045
  7. Kulish, V. V., Lysenko, A. V., Koval, V. V., 2010. Cubic-nonlinear theory of a plasma-beam superheterodyne free electron laser with H-ubitron pumping. Telecommunications and Radio Engineering, 69(20), pp. 1859–1869. DOI: https://doi.org/10.1615/TelecomRadEng.v69.i20.90.
  8. Kulish, V. V., Lysenko, A. V., Oleksiienko, G. A., Koval, V. V., Rombovsky, M. Yu., 2014. Plasma-beam superheterodyne FELs with helical electron beams. Appl. Phys., 5, pp. 24–28 (in Russian).
  9. Kulish, V. V., Lysenko, A. V., Oleksiienko, G A., Koval, V. V., Rombovsky, M., 2014. Nonlinear Theory of Plasma-Beam Superheterodyne Free Electron Laser of Dopplertron Type with Non-Axial Injection of Electron Beam. Acta Phys. Pol. A, 126(6), pp. 1263–1268. DOI: https://doi.org/10.12693/APhysPolA.126.1263
  10. Lysenko, A. V., Alekseyenko, G. A., 2016. Plasma-Beam Superheterodyne Free Electron Laser with H-ubitron Pumping and Non-Axial Electron Beam Injection. Telecommunications and Radio Engineering, 75(8), pp. 745–756. DOI: https://doi.org/10.1615/TelecomRadEng.v75.i8.70
  11. Mohsenpour, T., Mehrabi, N., 2013. Instability of Wave Modes in a Two-Stream free Electron-Laser with a Helical Wiggler and an Axial Magnetic Field. Phys. Plasmas, 20(8), pp. 082133 (7 p.). DOI: https://doi.org/10.1063/1.4817822
  12. Liu, W., Yang, Z., Liang, Z., 2006. Instability of Two-stream Free-electron Laser with an Axial Guiding Magnetic Field. Int. J. Infrared Millimeter Waves. 27(8), pp. 1073–1085. DOI: https://doi.org/10.1007/s10762-006-9095-6
  13. Mehdian, H., Saviz, S., 2008. Electron trajectory and growth rate in a two-stream electromagnetically pumped free electron laser and axial guide field. Phys. Plasmas, 15(9), pp. 093103 (5 p.). DOI: https://doi.org/10.1063/1.2977771
  14. Aleksandrov, A. F., Bogdankevich, L. S., Rukhadze, A. A., 1988. Fundamentals of Plasma Electrodynamics. Moscow: Vysshaya Shkola Publ. (in Russian).
  15. Bellan, P. M., 2008. Fundamentals of Plasma Physics. Cambridge University Press.
  16. Bakhtiari F., Esmaeilzadeh M., Ghafary B. 2017. Terahertz radiation with high power and high efficiency in a magnetized plasma. Phys. Plasmas, Vol. 24(7), pp. 073112. DOI: https://doi.org/10.1063/1.4991395
  17. Miroshnichenko, V. I., 1980. Nonlinear theory for the stimulated coherent scattering of electromagnetic waves by a relativistic electron beam in a magnetic field. Pis’ma Zh. Tekh. Fiz., 5, рр. 318–321 (in Russian).
  18.  Parker, R. K., Jackson, R. H., Gold, S. H., Freund, H. P., Granatstein, V. L., Efthimion, P. C., Herndon, M., Kinkead, A. K., 1982. Axial Magnetic-Field Effects in a Collective-Interaction Free-Electron Laser at Millimeter Wavelengths. Phys. Rev. Lett. 48(4), pp. 238–242. DOI: https://doi.org/10.1103/PhysRevLett.48.238
  19. Kheiri, G., Esmaeilzadeh, M., 2013. Dispersion relation and growth rate in a Cherenkov free electron laser: Finite axial magnetic field. Phys. Plasmas. 20(12), pp. 123107 (8 p.). DOI: dx.doi.org/10.1063/1.4841255
  20. Ginzburg, N. S., Peskov, N. Y., 2013. Nonlinear theory of a free electron laser with a helical wiggler and an axial guide magnetic field. Phys. Rev. ST Accel. Beams, 16(9), pp. 090701 (18 p.). DOI: doi.org/10.1103/PhysRevSTAB.16.090701
  21. Esmaeildoost, N., Jafari, S., Abbasi, E., 2016. External magnetic field effect on the growth rate of a plasma-loaded free-electron laser. Eur. Phys. J. Plus, 131(6), p. 192. DOI: https://doi.org/10.1140/epjp/i2016-16192-5
  22. Lysenko, A. V., Oleksiienko, G. A., Fedenko, M. O., 2015. Application of the Modernized Method of Averaged Characteristics in Theory Problems of Plasma-beam Superheterodyne Free Electron Lasers J. Nano- Electron. Phys., 7(4), pp. 04083(8) (an Ukrainian).