• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)


Yeryomka, VD, Kurayev, AA, Matveenko, VV, Sinitsyn, AK

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine

Belarusian State University of Informatics and Radioelectronics
6 P. Brovki Street, Minsk 220013 Belarus

Language: Russian

The results of theoretical and experimental studies of oro-trons – oscillators of diffraction radiation with spatially developed electrodynamic systems, electromagnetic oscillations in which are excited, as a rule, by nonrelativistic spatially developed electron flows, attests to the potential capabilities of this class of devices when solving problems of mastering the terahertz frequency range. One of the main problems arising when the efficiency of such oscillators increases with the length of their working wave is associated with the need to ensure a high utilization factor of all partial layers of a highly perveance spatially developed electron beam in the electron-wave interaction zone. This problem is solved by increasing the intensity of the microwave field in the energy exchange zone between electrons and electromagnetic waves. An effective way to increase the utilization factor of all partial cross-sectional layers of a spatially developed electron beam is to use the clynotronic effect. The results of mathematical modeling and optimization of the energy characteristics of electron-wave interaction in the radial orotron of the terahertz range indicate the possibility of achieving an electronic efficiency of about 20% in oscillators of this design when using the clynotronic effect.

Keywords: coefficient of use of electron flow, mathematical modeling, optimization, orotron, oscillator, terahertz range, “clynotronic effect”

Manuscript submitted 19.10.2017
PACS 84.40.Fe
Radiofiz. elektron. 2017, 22(4): 62-68
Full text (PDF)

  1. Siegel, P. H., 2002. Terahertz Technology. IEEE Trans. Microwave Theory Tech., 50(3), pp. 910–928. DOI: https://doi.org/10.1109/22.989974
  2. Koch, M., 2006. Terahertz technology: Quo vadis? Photonik Int., pp. 14–17.
  3. Weinstein, L. A., Isaev, V. A., Trubetskov, D. I., 1983. Electronic oscillator with open resonator. Radiotekhnika i Elektronika, 28(7), pp. 1232–1248 (in Russian).
  4. Zeitlin, M. B., Myasin, E. A., 1993. Orotron. Analysis of effective modes. Radiotekhnika i Elektronika, 38(6), pp. 961–981 (in Russian).
  5. Myasin, E. A., Evdokimov, V. V., Ilyin, A. Y., 2011. Orotron with double-row periodic structure of the 140…300 GHz band. Radiotekhnika i Elektronika, 56(4), pp. 454–467 (in Russian).
  6. Yeryomka, V. D., Stadnik, A. V., Shestopalov, V. P., 1980. Difraction Radiation Oscillator. USSR Autorsʼ Certificate 830946 (in Russian).
  7. Yeryomka, V. D., Kravchenko, V. F., Kurayev, A. A., Pustovoit, V. I., Sinitsyn, A. K., 2000. Atomic functions in the optization problem of two-beam orotron efficiency with in
    irregular dual comb. Zarubezhnaya radioelektronika. Uspekhi sovremennoy radioelektroniki, 3, pp. 58–62 (in Russian).
  8. Gurevich, А. V., Yeryomka, V. D., Кurayev, А. А., Kravchenko, V. F., Sinitsyn, A. K., 2007. Two-stage orbictron – amplifier and frequency multiplier. Uspekhi sovremennoy
    , 10, pp. 64–69 (in Russian).
  9. Yeryomka, V. D., Kurayev, A. A., Sinitsyn, A. K., 2004. Orbictrons – multi-beam oscillators of mm- and submm-waves. In: 14th Int. Crimean Conf. Microwave & Telecommunication Technology (CriMiCoʼ2004): conf. proc. Sevastopol, Ukraine. 13–17 Sept. 2004, pp. 199–202 (in Russian).
  10. Yeryomka, V. D., Gurevich, A. V., Kurayev, A. A., Sinitsyn, A. K., 2011. Сlinoorbictron – Terhertz Range Oscillator. In:
    XIIth IEEE Int. Vacuum Electronics Conf. (IVECʼ2011): conf. digest. India, Bangalore, 21–24 Feb., 2011, pp. 253–254.
  11. Gulyaev, Y. V., Kurayev, A. A., Nefedov, E. I., Olenin, V. D., Slepyan, G. Ya., Slepyan, A. Ya., 1981. The optimization problem of a coaxial orotron. Dok. Akad. Nayk SSSR, 257(2), pp. 349–352 (in Russian).
  12. Yezhov, D. I., Kurayev, A. A., Nefedov, E. I. et al., 1986. Coaxial Orotron. USSR Autorsʼ Certificate 1129670 (in Russian).
  13. Yeryomka, V. D., Kurayev, A. A., Rak, O. A., Sinitsyn, A. K., 2010. Terahertz range coaxial klinoorotron oscillator. In:
    7th Int. Kharv Symp. Physics and Engineering of Micro-waves, Millimeter and Submillimeter Waves (MSMW'2010): Proc. Kharkіv, Ukraine, June 21–26, 2010, pp. 1–3.
  14. Batura, M. P., Kurayev, A. A, Sinitsyn, A. K., 2007. Fundamentals of the Theory, Calculation and Optimization of Modern Microwave Devices. Minsk: BSUIR Publ. (in Russian).