• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

SUPERRADIANCE OF NANOLASERS IN INFORMATION-MEASURING PROCEDURES

Machekhin, YP, Kurskoy, YS, Gnatenko, AS, Tkachenko, VA
Organization: 

Kharkiv National University of Radio Electronics
14, Nauka Av., Kharkiv, 61166, Ukraine

E-mail: oleksandr.hnatenko@nure.ua

https://doi.org/10.15407/rej2018.02.061
Language: russian
Abstract: 

Subject and purpose. The subject of the paper is superradiation of nanolasers and its process of quantum dot formation, increased concentration of nonequilibrium charge carriers, as well as physical principles of nanolasers operation with superradiation in telecommunication systems. The purpose of the work is to substantiate the possibility of using nanoscale lasers in the regime of superradiance and devices based on them to solve problems of transmission of high-speed optical information signals and tasks of stabilization of the radiation frequency.

Methods and methodology. Several types of nanolasers have been reviewed. It was determined that despite the creation of a number of designs, a general theory of stabilizing the parameters of nanolaser radiation is not developed, which is a deterrent to the development of this type of lasers and their practical application. To use nanolasers in information-measuring procedures, the problems of stabilizing the radiation frequency, obtaining pulses of a predetermined duration (of femtosecond order), and the peak power must be solved. To provide pulsed radiation with the necessary parameters, the authors propose to use the superradiance regime previously discovered in semiconductor heterostructures and expressed in a sharp increase in the radiation power. The analysis of the conditions for the formation of superradiance in the domain structure of semiconductors is based on the theoretical model for describing the concentration of nonequilibrium carriers (electrons and holes) in the active region of the laser.

Results. The process of the appearance of superradiation in nanolasers and the possibility of using this effect are considered. It is proved that highpower femtosecond pulses are formed in nanolasers with superradiance.

Conclusions. The results of the conducted studies substantiate the possibility and prospect of using nanolasers in the regime of superradiation and devices based on them for the transmission of high-speed optical information signals, the creation of new optical frequency standards and photonics devices. Their application will contribute to the development of nanometrology, nanotechnology, information and other technologies. Calculations have been performed to prove that in the superradiance regime, nanolasers generates femtosecond pulses with a power of 10.9 μW, which allows the signal to be transmitted of optical fiber to a distance of 750 m. In the future, work is planned to increase the power of such lasers to transmit information over longer distances.

Keywords: frequency stabilization, generation of radiation, nanolaser, photonics, superradiance

Manuscript submitted18.02.2018
PACS 42.55.Sa, 42.55.Px​
Radiofiz. elektron. 2018, 23(2): 61-68
Full text (PDF)

References: 
  1. Stockman, M. I., 2011. Nanoplasmonics: past, present, and glimpse into future. Opt. Express, 19(22), pp. 22029–22106. DOI: https://doi.org/10.1364/OE.19.022029
  2. Hill, M. T., Oei, Y. S., Smalbrugge, B., Zhu, Y., de Vries, T., van Veldhoven, P. J., van Otten, F. W. M., Eijkemans, T. J., Turkiewicz, J. P., de Waardt, H., Geluk, E. J., Kwon, S., Lee, Y., Nötzel, R. and Smit, M. K., 2007. Lasing in metallic-coated nanocavities. Nat. Photonics, 1, pp. 589–594. DOI: https://doi.org/10.1038/nphoton.2007.171
  3. Ding, K., Liu, Z. C., Yin, L. J., Hill, M. T., Marell, M. J. H., van Veldhoven, P. J., Nöetzel, R. and Ning, C. Z., 2012. Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection. Phys. Rev. B., 85(4), pp. 041301(R). DOI:1https://doi.org/10.1103/PhysRevB.85.041301
  4. Ding, K., Hill, M., Liu, Z., Yin, L., Sahin, D., van Veld-hoven, P., Geluk, E. J., Vries, T. D. and Ning, C., 2012. Record Performance of a CW Metallic Subwavelength-Cavity Laser at Room Temperature. In: CLEO: Science and Innovations 2012 (Conference on Lasers and Electro-Optics 2012). OSA Technical Digest. San Jose, California United States, 6–11 May 2012, paper CTh4M.3.DOI: https://doi.org/10.1364/CLEO_SI.2012.CTh4M.3
  5. Khajavikhan, M., Simic, A., Katz, M., Lee, J. H., Slutsky, B., Mizrahi, M., Lomakin, V., Fainman, Y., 2012. Thresholdless nanoscale coaxial lasers. Nature, 482(7384), pp. 204–207. DOI: https://doi.org/10.1038/nature10840
  6. Planet Today, 2017. The world's smallest lasers can destroy cancer cells [online]. Available at: http://planet-today.ru/novosti/nauka/item/71236-samye-malenkie-v-mire-lazery-mogut-unichtozhat-rakovye-kletki
  7. Lu, Y. J., Wang, C. Y., Kim, J., Chen, H. Y., Lu, M. Y., Chen, Y. C., Chang, W. H., Chen, L. J., Stockman, M. I., Shih, C. K., Gwo, S., 2014. All-color plasmonicnanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. Nano Lett., 14(8), P. 4381–4388. DOI: https://doi.org/10.1021/nl501273u
  8. Noginov, M., Zhu, G., Belgrave, A., Bakker, R., Sha-laev, V. M., Narimanov, E. E., Stout, S., Herz, E., Suteewong, T., Wiesner, U., 2009. Demonstration of a spaser-based nanolaser. Nature, 460(7259), pp. 1110–1112. DOI: https://doi.org/10.1038/nature08318
  9. Zvelto, O., 2008. Principles of lasers. Translated from English and ed. by T. A. Shmaonov. 4 ed. SPb.: Lan Publ. (in Russian).
  10. Dicke, R. H., 1954. Coherence in Spontaneous Radiation Processes. Phys. Rev., 93(1), pp. 99–110. DOI: https://doi.org/10.1103/PhysRev.93.99
  11. Karachevsky, L. Ya., Novikov, I. I, Gordeev, N. Yu., 2004. Dicke superradiance mechanism in semiconductor heterostructures. Physics and technology of semiconductors, 38(7), pp. 872–876 (in Russian).
  12. Zaitsev, S. V., Gordeev, N. Yu., Graham, L. A., Kopchatov, V. I., Karachinsky, L. Ya., Novikov, I. I., Huaker, D. L., Kopíev, P. S., 1999. Superradiance in semiconductors. Physics and technology of semiconductors, 33(12), pp. 1456–1461 (in Russian).
  13. Lebedev, D. V., Mintairov, A. M., Vlasov, A. S., Davy-dov, V. Yu., Kulagina, M. M., Troshkov, S. I., Bogdanov, A. A., Smirnov, A. N., Gocalinska, A., Juska, G., Pelucchi, E., Kapaldo, J., Rouvimov, S., Merz, J. L., 2017. Laser generation in microdiscs with an active region based on lattice-matched InP/AllnAs nanostructures. Journal of Technical Physics. 87(5), pp. 1066–1071 (in Russian).
  14. Ankun, Y., Hoang, Т., Odomatall, T., 2015. Real-time tunable lasings from plasmonics nanocavity arrays. NatCommun. 4(6939), pp. 1–7.
  15. Zheleznyakov, V. V., 1997. What is superradiance. Soros Educational Journal. 4, pp. 52–57 (in Russian).
  16. Allen, L., Eberly, J., 1978. Optical resonances and two-level atoms. Translated from English and ed. by V. L. Strizhevskiy. Moscow: Mir Publ. (in Russian).
  17. Manasreh, M. O. ed., 1997. Antimonide-Related Strained-Layer Heterostructures (Optoelectronic Properties of Semiconductors and Superlattice). 1st ed. Gordon and Breach Science Publ.
  18. Zyablovsky, A. A, Dorofeenko, A. V, Vinogradov, A. P., Pukhov, A. A., Andrianov, E. S., Lisyanskiy, A. A., 2012. Two-dimensional superradiant plasmon laser. In: 55th Scientific Conference MIPT-2012. Problems of modern physics. Moscow, Russia, 19–25 Nov. 2012, pp. 14–15 (in Russian).
  19. Li, H., Wolf, P., Moser, P., Larisch, G., Lott, J. A. and Bimberg, D., 2014. Vertical cavity surface-emittine
    for optical interconnects. SPIE Newsroom. DOI: https://doi.org/10.1117/2.1201411.005689
  20. Chin, A. H., Vaddiraju, S., Maslov, A. V., Ning, C. Z., Sunkara, M. K., & Meyyappan, M., 2006. Near-infrared semiconductor subwavelength-wire laser. Appl. Phys. Lett., 88, P. 163115 (3 p.). DOI: https://doi.org/10.1063/1.2198017
  21. Van Campenhout, J., Rojo-Romeo, P., Regreny, P., Seassal, C., van Thourhout, D., Verstuyft, S., Di Cioccio, L., Fedeli, J.-M., Lagahe, C. and Baets, R., 2007. Electrically pumped InP-based microdisk laser integrated with a nanophotonic silicon on insulator waveguide circuit. Opt. Express, 15(11), pp. 6744–6749. DOI: https://doi.org/10.1364/OE.15.006744
  22. Gnatenko, A. S., Machekhin, Yu. P., 2015. Generation mode stability of a fiber ring laser. Telecommunications and Radio Engineering, 74(7), pp. 641–647. DOI: https://doi.org/10.1615/TelecomRadEng.v74.i7.70
  23. Zhukov, A. E., Kryzhanovskaya, N. V., Maksimov, M. V., Lipovskiy, A. A., Savel'ev, A. V., Bogdanov, A. A., Shostak, I. I., Moiseev, E. I., Karpov, D. V., Laukkanen, J., Tommila, J., 2014. Laser generation in microdiscs of ultra-small diameter. Physics and technology of semiconductors. 48(12), pp. 1666–1670 (in Russian).
  24. Dmitriev, A. L., 2007. Optical information transmission systems. SPb.: SPbSU ITMO Publ. (in Russian).