• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

Nonlinear interaction theory between a tubular beam of charged particles and potential surface waves of plasma cylinder

Averkov, YO, Prokopenko, YV, Yakovenko, VM
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine

E-mail: yuriyaverkov@gmail.com; prokopen@ire.kharkov.ua; yavm@ire.kharkov.ua 
 

V. N. Karazin Kharkiv National University
4 Svobody Sq., Kharkiv, 61022, Ukraine

 

Kharkiv National University of Radio Electronics
14, Nauka Av., Kharkiv, 61166, Ukraine

https://doi.org/10.15407/rej2018.04.003
Language: russian
Abstract: 

Subject and purpose. Investigation of the generation mechanisms of electromagnetic waves by the motion of charged particles in various electrodynamic systems is an actual problem of modern radiophysics and electronics. Recently, much attention has been paid to the interaction between the streams of charged particles and solid-state structures that have dispersive properties. As a rule, such structures contain plasma-like media. The basis for the generation of electromagnetic waves is the system instabilities caused by perturbations in the streams of charged particles. The stationary mode of wave generation is provided by nonlinear interactions of a charged particle beam with eigenmodes of solid-state structure. In this paper, a theoretical study of the nonlinear stabilization effect of instability of an infinitesimally thin tubular electron beam propagated along the surface of solid-state plasma cylinder has been carried out.

      Methods and methodology. Using Maxwell's equations and motion equation of plasma electrons based on an integrated approach (analytical and numerical) the nonlinear theory of instability of a tubular electron beam flying over a plasma cylinder has been constructed. The plasma of the cylinder was assumed collisionless. The calculations have been performed in electrostatic approximation due to the nonrelativistic velocity of the beam electrons.

      Results. It is shown that the nonlinear stabilization of the wave amplitude increase is realized due to the bunching of the beam electrons into bunches and their subsequent capture by the wave field. The law of the instability rise time and the wave maximum amplitude from the plasma cylinder radius has been revealed. It is established that the nonlinear stage of instability begins earlier in an electrodynamic system with a smaller radius of the plasma cylinder. In this system, the maximum value of the slow amplitude has greater value.

      Conclusions. The research results broaden our understanding about the physical properties of systems with plasma-like media and systematize knowledge about the excitation mechanisms of potential surface waves in electrodynamic systems that form the basis of microwave oscillators.     

Keywords: beam instability, capture of particles, electron beam, instability increment, nonlinear interaction, phase portrait, Vavilov-Cherenkov effect

Manuscript submitted 27.06.2018
PACS: 03.50.-z, 52.40.-w, 52.59.-f, 85.45.-w
Radiofiz. elektron. 2018, 23(4): 3-14
Full text  (PDF)

References: 
  1. Ahiezer, A. I., Lyubarskiy, G. Ya., 1951. To the nonlinear theory of electron plasma oscillations. Dok. Akad. Nauk SSSR, 80(2), pp. 193–195 (in Russian).
  2. Ahiezer, A. I., Polovin, R. V., 1955. On relativistic plasma oscillations. Dok. Akad. Nauk SSSR, 102(5), pp. 919–920 (in Russian).
  3. Ahiezer, A. I., Polovin, R. V., 1956. To the theory of wave motions of an electron plasma. Zh. Eksp. Teor. Fiz., 30(5), pp. 915–928 (in Russian).
  4. Faynberg, Ya. B., Shapiro, V. D., 1965. Quasilinear theory of oscillation excitation during injection of an electron beam into a plasma half-space. Zh. Eksp. Teor. Fiz., 47(4), pp. 1389–1404 (in Russian).
  5. Faynberg, Ya. B., Shapiro, V. D., 1963. To the nonlinear interaction theory of a relativistic beam with a plasma. 4-ya konf. po fizike plazmyi i problemam upravlyaemogo termoyadernogo sinteza: proc. Kiev, USSR, pp. 92–103 (in Russian).
  6. Mazitov, R. K., 1965. On the damping of plasma waves. Prikladnaya mehanika i tehnicheskaya fizika, 1, pp. 27–31 (in Russian).
  7. O'Neil, T., 1965. Collisionless damping of nonlinear plasma oscillations. Phys. Fluids, 8(12), pp. 2255–2262. DOI:https://doi.org/10.1063/1.1761193
  8. Fainberg Ya. B., 1968. Interaction of beams of charged particles with plasma. Czech. J. Phys., 18B(5), pp. 652–677. DOI: https://doi.org/10.1007/BF01691021
  9. Faynberg, Ya. B., Shapiro, V. D., Shevchenko, V. I., 1970. To the nonlinear theory of interaction between the plasma and "monochromatic" relativistic electron beam. Zh. Eksp. Teor. Fiz., 57(3), pp. 966–977 (in Russian).
  10. Kurilko, V. I., 1970. On the development mechanism of beam instability in a plasma. Zh. Eksp. Teor. Fiz., 57(3), pp. 885–893 (in Russian).
  11. Drummond, W. E., Malmberg, J. H., O’Neil, T. M., Thompson, J. R., 1970. Nonlinear Development of the Beam-Plasma Instability. Phys. Fluids, 13(9), pp. 2422–2425. DOI: https://doi.org/10.1063/1.1693255
  12. Kovtun, R. I., Ruhadze, A. A., 1970. To the nonlinear interaction theory of a low-density REB with a plasma. Zh. Exp. Teor. Fiz., 58(5), pp. 1709–1714 (in Russian).
  13. Breyzman, B. N., Ryutov, D. D., 1971. Quasilinear relaxation of an ultrarelativistic electron beam in a plasma. Zh. Eksp. Teor. Fiz., 60(1), pp. 408–422 (in Russian).
  14. Onischenko, I. N., Linetskiy, A. R., Matsiborko, N. G., Shapiro, V.D., Shevchenko, V. I., 1970. Excitation of a monochromatic plasma wave by an electron beam. Pis'ma Zh. Eksp. Teor. Fiz., 12(8), pp. 407–411 (in Russian).
  15. Matsiborko, N. G., Onishchenko, I. N., Shapiro, V. D., and Shevchenko, V. I., 1972. On nonlinear theory of instability of a monoenergetic electron beam in plasma. Plasma Physics, 14(6), pp. 591–600. DOI: https://doi.org/10.1088/0032-1028/14/6/003
  16. Ivanov, A. A., Parail, V. V., Soboleva, T. K., 1972. Nonlinear theory of interaction of a monoenergetic beam with dense plasma. Zh. Exp. Teor. Fiz., 63(5), pp. 1678–1685 (in Russian).
  17. Alterkop, B. A., Rosinskiy, S. E., Tarakanov, V. P., 1979. Nonlinear interaction of a blowing electron beam with a surface plasma wave. Fiz. Plasmy, 5(2), pp. 291–296 (in Russian).
  18. Kuzelev, M. V., Lazutchenko, O. V., Ruhadze, A. A., 1999. Regimes and spectra of the Cherenkov beam instability in a nonlinear plasma. Izv. Vyssh. Uchebn. Zaved. Radiofiz., 42(10), pp. 958–976 (in Russian).
  19. Shlapakovski, A. S., Artemenko, S. N., Avgustinovich, V. A., Mashchenko, A. I., Matvienko, V. M., Mityushkina, V. Yu., Vintizenko, I. I., Jiang, W., and Schamiloglu, E., 2006. Status of the development of X-band antenna-amplifier: Design, Simulations, and Prototype Experiments. In: 14th Symposium on High Current Electronics: proc. Tomsk, Russia, 10–15 Sept. 2006. P. 359–362.
  20. Avgustinovich, V. A., Artemenko, S. N., Mashchenko, A. I., Shlapakovski, A. S., Yushkov, Yu. G., 2010. Demonstration of amplification in a dielectric Cerenkov maser with a rod-shaped slow-wave system. Pis'ma Zh. Tekh. Fiz., 36(5), pp. 103–110 (in Russian).
  21. Kirichenko, A. Ya., Lonin, Yu. F., Papkovich, V. G., Ponomarev, A. G., Prokopenko, Yu. V., Uvarov, V. T., Filippov, Yu. F., 2010. A microwave oscillator with a "whispering gallery" resonator. Problems of atomic science and technology. Ser. Nuclear Physics Research, 2(66), pp. 135–139 (in Russian).
  22. Galaydych, K. V., Lonin, Yu. F., Ponomarev, A. G., Prokopenko, Yu. V., Sotnikov, G. V., 2010. Mathematical model of an excitation by electron beam of "whispering gallery" modes in cylindrical dielectric resonator. Problems of atomic science and technology. Ser. Plasma Phys., 6, pp. 123–125.
  23. Dormidontov, A. V., Kirichenko, A. Ya., Lonin, Yu. F., Ponomarev, A. G., Prokopenko, Yu. V., Sotniov, G. V., Uvarov, V. T., Filippov, Yu. F., 2012. Auto-oscillatory system based on dielectric resonator with whispering-gallery modes. Pis'ma Zh. Tekh. Fiz., 38(2), pp. 65–73 (in Russian). DOI: https://doi.org/10.1134/S106378501201021X
  24. Galaydych, K. V., Lonin, Yu. F., Ponomarev, A. G., Prokopenko, Yu. V., Sotnikov, G. V., 2012. Nonlinear analysis of mm waves excitation by high–current REB in dielectric resonator. Problems of atomic science and technology. Ser. Plasma Phys., 18(6(82)), pp. 158–160.
  25. Galaydych, K. V., Lonin, Yu. F., Ponomarev, A. G., Prokopenko, Yu. V., Sotnikov, G. V., Uvarov, V. T., 2012. Excitation of millimeter waves by a high-current REB in a dielectric resonator. Problems of atomic science and technology. Ser. Nuclear Physics Research, 3(79), pp. 174–178.
  26. Averkov, Yu. O., Prokopenko, Yu. V., Yakovenko, V. M., 2016. The instability of hollow electron beam interacting with plasma-like medium. Radiofizika i elektronika, 7(21)(2), pp. 28–35 (in Russian). DOI:https://doi.org/ 10.15407/rej2016.02.028
  27. Averkov, Yu. O., Prokopenko, Yu. V., Yakovenko, V. M., 2017. Interaction between a tubular beam of charged particles and a dispersive metamaterial of cylindrical configuration. Phys. Rev. E., 96(1), pp. 013205(12). DOI: https://doi.org/10.1103/PhysRevE.96.013205
  28. Abramovits, M., Stigan, I. ed., 1979. Reference on special functions: with formulas, graphics and tables. Moscow: Nauka Publ. (in Russian).
  29. Averkov, Yu. O., Prokopenko, Yu. V., Yakovenko, V. M., 2016. Interaction a flow of charged particles with eigenmodes of a dielectric cylinder. Radiofizika
    i elektronika
    , 7(21)(4), pp. 68–76 (in Russian). DOI: https://doi.org/10.15407/rej2016.04.068 
  30. Akhiezer, A. I. ed., Akhiezer, I. A., Polovin, R. V., Sitenko, A. G., Stepanov, K. N., 1974. Plasma Electro-dynamics. Moscow: Nauka Publ. (in Russian).