• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)


Nickolaenko, AP, Galuk, YP, Hayakawa, M


O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine

E-mail: sasha@ire.kharkov.ua

Sankt-Petersburg State University
35, University Avenue., St. Petersburg, Peterhof 198504, Russia

E-mail: j.galuk@spbu.ru

Institute Hayakawa, the seismic company electromagnetism,
Incubation Center 508 Telecommunication University,
Chofugaoka 1-5-1, Chofu, Tokyo 182-8585, Japan

E-mail: hayakawa@hi-seismo-em.jp

Language: russian


Subject and purpose of the work. In the present work, the perturbations are simulated of the amplitude of the vertical electric and horizontal magnetic fields of global electromagnetic (Schumann) resonance caused by the local ionosphere disturbance over the earthquake center with an account for the day–night non-uniformity. The source and the receiver are located at the same meridian symmetrically with respect to the equator at the points with coordinates 22.5° N and 22.5° S respectively. Position of the propagation paths is fixed relative the morning terminator: on its night (60° E) or the dayside (120° E). Variations of the amplitudes perturbation of the fields are considered when the localized non-uniformity moves along or across the propagation path.

Methods and methodology. To determine the propagation parameters of extremely low frequency (ELF) radio waves, the full wave solution is used, which leads to the solution of the Riccati equation. The spectral components of the fields are found numerically using the two-dimensional telegraph equation.

The results of the work. Numerical estimates are obtained of the influence of the local non-uniformity of the ionosphere on the amplitude of the electric and magnetic fields at different frequencies in the global electromagnetic (Schumann) resonance band for different positions of disturbance relative the propagation path located at the night or the dayside of the morning terminator.

Conclusion. The influence of localized non-uniformity on the field amplitude increases with frequency. Field modifications in the presence of a local disturbance are of the interference nature due to interaction of the direct and the reflected from the local inhomogeneity radio waves. The day-night regular non-uniformity of the ionosphere plays a minor role and its influence might be neglected.

Keywords: field perturbations, global day – night non-uniformity, schumann resonance, seismogenic perturbation of the conductivity of the middle atmosphere

Manuscript submitted  01.10.2018
PACS: 93.85.Bc; 93.85.Jk; 94.20.Cf; 94.20.ws
Radiofiz. elektron. 2019, 24(1): 33-46
Full text  (PDF)

1. Ouzounov, D., Pulinets, S., Hattori, K. and Taylor, P. eds., 2018. Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies. 1st ed. Geophysical Monograph 234. American Geophysical Union and John Wiley & Sons, Inc. DOI: https://doi.org/10.1002/9781119156949
2. Ohta, K., Watanabe, N., Hayakawa, M., 2006. Survey of anomalous Schumann resonance phenomena observed in Japan, in possible association with earthquakes in Taiwan. Phys. Chem. Earth, Pafrts A/B/C, 31(4–9), pp. 397–402. DOI: https://doi.org/10.1016/j.pce.2006.02.031
3. Nickolaenko, A. P., Hayakawa, M., Sekiguchi, M., Ando, Y. and Ohta, K., 2006. Model modifications in Schumann resonance intensity caused by a localized ionosphere disturbance over the earthquake epicenter. Ann. Geophys., 24(2), pp. 567–575. DOI: https://doi.org/10.5194/angeo-24-567-2006
4. Hayakawa, M., Molchanov, O. A., 2007. Seismo-electromagnetics as a new field of radiophysics: Electromagnetic phenomena associated with earthquakes. Radio Sci. Bull., 320, pp. 8–17.
5. Hayakawa, M., Nickolaenko, A. P., Sekiguchi, M., Yamashita, K., Yu-ichi, Ida, Yano, M., 2008. Anomalous ELF phenomena in the Schumann resonance band as observed at Moshiri (Japan) in possible association with an earthquake in Taiwan. Nat. Hazards Earth Syst. Sci., 8(6), pp. 1309–1316. DOI: https://doi.org/10.5194/nhess-8-1309-2008
6. Hayakawa, M., Hobara, Y., Ohta, K., Izutsu, J., Nickolaenko, A. P., Sorokin, V., 2011. Seismogenic effects in the ELF Schumann resonance band. IEEJ Trans. FM, 131(9), pp. 684–690. DOI: https://doi.org/10.1541/ieejfms.131.684
7. Nickolaenko, A. P., Hayakawa, M., 2014. Localized ionospheric disturbance over the earthquake epicentre and modifications of Schumann resonance electromagnetic fields. Geomat. Nat. Haz. Risk., 5(3), pp. 271–283. DOI: https://doi.org/10.1080/19475705.2013.809557
8. Nickolaenko, A. P., Hayakawa, M., 2015. Disturbances of lower ionosphere above center of earthquake and anomaly in the global electromagnetic resonance signal. Part 1. Models of ionosphere. Radiofiz. Elektron., 6(20)(1), pp. 32–39 (in Russian). DOI: https://doi.org/10.15407/rej2015.01.032
9. Nickolaenko, A. P., Hayakawa, M., 2015. Disturbances of lower ionosphere above the center of earthquake and anomalous signals of global electromagnetic resonance. Part 2. Anomalies in the power spectra. Radiofiz. Elektron., 6(20)(2), pp. 32–39 (in Russian). DOI: https://doi.org/10.15407/rej2015.02.032
10. Nickolaenko, A. P., Galuk, Yu. P., Hayakawa, M., 2015. Vertical profile of atmospheric conductivity corresponding to Schumann resonance parameters. Radiofiz. Elektron., 6(20)(3), pp. 30–37 (in Russian) DOI: https://doi.org/10.15407/rej2015.03.022
11. Zhou, H. J., Hayakawa, M., Galuk, Yu. P., Nickolaenko, A. P., 2016. Conductivity profiles corresponding to the knee model and relevant SR spectra. Sun Geosph., 11(1), pp. 65–74.
12. Kudintseva, I. G., Nickolaenko, A. P., Rycroft, M. J. and Odzimek, A., 2016. AC and DC global electric circuit properties and the height profile of atmospheric conductivity. Ann. Geophys., 59(5), pp. A0545 (15 p.). DOI: https://doi.org/10.4401/ag-6870.
13. Nickolaenko, A. P., Galuk, Yu. P., Hayakawa, M., 2016. Vertical profile of atmospheric conductivity that matches Schumann resonance observations. SpringerPlus, 5(108), 12 p. DOI: https://doi.org/10.1186/s40064-016-1742-3
14. Nickolaenko, A. P., Shvets, A. V. and Hayakawa, M., 2016. Propagation at Extremely Low-Frequency Radio Waves. In: J. Webster, ed. 2016. Wiley Encyclopedia of Electrical and Electronics Engineering. Hoboken, USA: John Wiley & Sons, Inc., pp. 1–20. DOI: https://doi.org/10.1002/047134608X.W1257.pub2
15. Nickolaenko, A. P., Shvets, A. V., Hayakawa, M., 2016. Extremely Low Frequency (ELF) Radio Wave Propagation: A Review. Int. J. Electron. Appl. Res. (IJEAR), 3(2). Publ. online (http://eses.co.in/online_journal.html) ISSN 2395 0064
16. Nickolaenko, A. P., Galuk, Yu. P. and Hayakawa, M., 2017. Extremely Low Frequency (ELF) Wave Propagation: Vertical Profile of Atmospheric Conductivity Matching with Schumann Resonance Data. In: Albert Reimer, ed. 2017. Horizons in World Physics. New York: NOVA Sci. Publishers. Vol. 288, Ch. 6. ISBN: 978-1-63485-882-3, ISBN: 978-1-63485-905-9 (eBook).
17. Galuk, Yu. P., Nickolaenko, A. P., Hayakawa, M., 2017. Shift of antipode maximum of electric field in the earth–ionosphere cavity by the day–night non-uniformity. Radiofiz. Elektron., 22(2), pp. 29–40 (in Russian) DOI: https://doi.org/10.1615/TelecomRadEng.v76.i15.30
18. Galuk, Yu. P., Nickolaenko, A. P., Hayakawa, M., 2018. Amplitude variations of ELF radio waves in the Earth–ionosphere cavity with the day–night non-uniformity. J. Atmos. Solar-Terr. Phys., 169, pp. 23–36. DOI: https://doi.org/10.1016/j.jastp.2018.01.001
19. Galuk, Yu. P., Nickolaenko, A. P., Hayakawa, M., 2018. Impact of the Ionospheric Day-Night Non-Uniformity on the ELF Radio-Wave Propagation. Izv. Vyssh. Uchebn. Zaved. Radiofiz., 61(3), pp. 198–215 (in Russian). DOI: https://doi.org/10.1007/s11141-018-9880-9
20. Nickolaenko, A. P., Galuk, Yu. P. and Hayakawa, M., 2018. Deviations Of Source Bearing In The Earth–Ionosphere Cavity With The Day–Night Non-Uniformity. Radiofiz. Elektron., 23(2), pp. 22–33 (in Russian) DOI: https://doi.org/10.15407/rej2018.02.022
21. Mushtak, V. C., Williams, E. R., 2002. ELF propagation parameters for uniform models of the Earth-ionosphere waveguide. J. Atmos. Sol. Terr. Phys., 64(18), pp. 1989–2001. DOI: https://doi.org/10.1016/S1364-6826(02)00222-5
22. Galuk, Yu. P., 2015. Schumann resonance in the model of thunderstorm activity uniformly distributed over the globe. Radiofiz. Elektron., 6(20)(4), pp. 3–9 (in Russian). DOI: https://doi.org/10.15407/rej2015.04.003
23. Nickolaenko, A. P., 1984. Effects of a local inhomogeneity in the ionosphere on the propagation of ELF radio waves. Radiophysics and Quantum Electronics, 27(10), pp. 856–864.
 DOI: https://doi.org/10.1007/BF01039447
24. Nickolaenko, A. P., 1994. ELF radio wave propagation in a locally non-uniform Earth-ionosphere cavity. Radio Sci., 29(5), pp. 1187–1199. DOI: https://doi.org/10.1029/94RS01034
25. Nickolaenko, A. P., Hayakawa, M., 2002. Resonances in the Earth-ionosphere cavity. Kluwer Academic Publishers, Dordrecht-Boston-London.
26. Nickolaenko, A., Hayakawa, M., 2014. Schumann Resonance For Tyros (Essentials of Global Electromagnetic Resonance in the Earth–Ionosphere Cavity). Tokyo: Springer. Series XI, Springer Geophys. DOI: https://doi.org/10.1007/978-4-431-54358-9