• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)


Glibitskiy, DM, Gorobchenko, OA, Nikolov, OT, Cheipesh, TA, Dzhimieva, TN, Zaitseva, IS, Roshal, AD, Zibarov, AM, Shestopalova, AV, Semenov, MA, Glibitskiy, GM

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine

E-mail: dima.glib@gmail.com

V. N. Karazin Kharkiv National University
4 Svobody Sq., Kharkiv, 61022, Ukraine

O. M. Beketov National University of Urban Economy in Kharkiv
17, Marshal Bazhanov St., Kharkiv, 61002, Ukraine

The Research Institute of Chemistry, V. N. Karazin Kharkiv National University
4, Svobody Sq., Kharkiv, 61022, Ukraine

Language: russian


Subject and purpose. In this paper, we studied the relationship of the structural and aggregation state of biopolymers with the quantitative characteristics of the textures of the films formed during the drying of biopolymer solutions.

Methods and methodology. The structural changes of the biopolymer were determined by IR, UV and fluorescence spectroscopy, the size and surface potential of biopolymer particles were determined by dynamic light scattering, the state of the water environment was determined by microwave dielectrometry. To obtain films, saline solutions of calf thymus Na-DNA, bovine serum albumin (BSA) or human serum albumin (HSA) were dried in a glass cuvette under thermostatically controlled conditions. For the numerical characterization of textures, the relative area, fractal dimension and characteristics of zigzag patterns were used.

Results. The paper presents a mini-review of the results during the development of a method for assessing the influence of biologically active substances (inorganic and organic) and physical factors (temperature and gamma irradiation) on biopolymers by the changes in texture parameters. It is shown that the formation of zigzag structures is sensitive to the structural and aggregation effects of biologically active substances and physical factors, and requires the presence of chloride ions.

Conclusion. A method for assessing the influence of the corresponding factors by the changes in texture parameters is proposed. The presented results clarify the role of biopolymer, as well as salt cations and anions, in the formation of textures (in particular, zigzag structures) on the surface of films, and show the relationship of structural changes and aggregation of biopolymer with quantitative characteristics of zigzag patterns.

Keywords: biopolymer, bovine serum albumin, DNA, texture, water-salt solution, zigzag pattern

Manuscript submitted  02.10.2018
PACS: 68.55.J-, 68.55.jm, 87.15.nr, 87.15.nt, 87.64.M-
Radiofiz. elektron. 2019, 24(1): 58-68
Full text  (PDF)

1. Yahno, T. A., Kazakov, V. V., Sanin, O. A., Sanin, A. G., Yahno, V. G., 2010. Drops of biological fluids, drying on a solid substrate: the dynamics of morphology, mass, temperature and mechanical properties. Zh. Tekh. Fiz., 80(7), pp. 17–23 (in Russian).
2. Rapis, E. G., 2002. Change of the physical phase of non-equilibrium film of the complex of blood plasma proteins the patients with carcinoma. Zh. Tekh. Fiz., 72(4), pp. 139–142 (in Russian).
3. Gorza, F. D. S., Pedro, G. C., Trescher, T. F., da Silva, R. J., Silva, J. R., de Souza, N. C., 2014. Morphological analysis and interaction of chlorophyll and BSA. BioMed. Res. Int. 2014, Article ID 872701 (6 p.). DOI: https://doi.org/10.1155/2014/872701
4. Dugas, V., Broutin, J., Souteyrand, E., 2005. Droplet evaporation study applied to DNA chip manufacturing. Langmuir, 21(20), pp. 9130–9136. DOI: https://doi.org/10.1021/la050764y
5. Takhistov, P., Chang, H. C., 2002. Complex stain morphologies. Ind. Eng. Chem. Res., 41(25), pp. 6256–6269. DOI: https://doi.org/10.1021/ie010788
6. Brutin, D., Sobac, D., Loquet, B., Sampol, J., 2011. Pattern formation in drying drops of blood. J. Fluid Mech., 667, pp. 85–95. DOI: htts://doi.org/10.1017/S0022112010005070.
7. Killeen, A. A., Ossina, N., McGlennen, R. C., Minnerath, S., Borgos, J., Alexandrov, V., Sarvazyan, A., 2006. Protein self-organization patterns in dried serum reveal changes in B-cell disorders. Mol. Diagn. Ther., 10(6), pp. 371–380. DOI: https://doi.org/10.1007/BF03256214
8. Chen, R., Zhang, L., Zang, D., Shen, W., 2016. Blood drop patterns: formation and applications. Adv. Colloid Interface Sci., 231, pp. 1–14. DOI: https://doi.org/10.1016/j.cis.2016.01.008
9. Sikarwar, B. S., Roy, M., Ranjan, P., Goyal, A., 2015. Automatic pattern recognition for detection of disease from blood drop stain obtained with microfluidic device. In: Advances in Signal Processing and Intelligent Recognition Systems: proc. 2nd Int. Symp. Signal Processing and Intelligent Recognition Systems (SIRS-2015). Trivandrum, India, 16–19 Dec. 2015. pp. 655–667. DOI: https://doi.org/10.1007/978-3-319-28658-7_56
10. Kokornaczyk, M. O., Dinelli, G., Marotti, I., Benedettelli, S., Nani, D., Betti, L., 2011. Self-organized crystallization patterns from evaporating droplets of common wheat grain leakages as a potential tool for quality analysis. Sci. World J. 11(25), pp. 1712–1725. DOI: https://doi.org/10.1100/2011/937149
11. Andersen, J.-O., Henriksen, C. B., Laursen, J., Nielsen, A. A., 1999. Computerized image analysis of biocrystallograms originating from agricultural products. Comput. Electron. Agric. 22(1), pp. 51–69. DOI: https://doi.org/10.1016/S0168-1699(98)00043-X
12. Busscher, N., Kahl, J., Andersen, J.-O., Huber, M., Mergardt, G., Doesburg, P., Paulsen, M., Ploeger, A., 2010. Standardization of the biocrystallization method for carrot samples. Biol. Agric. Hortic. 27(1), pp. 1–23. DOI: https://doi.org/10.1080/01448765.2010.10510427
13. Kim, N., Li, Z., Hurth, C., Zenhausern, F., Chang, S.-F., Attinger, D., 2012. Identification of fluid and substrate chemistry based on automatic pattern recognition of stains. Anal. Methods. 4(1), pp. 50–57. DOI: https://doi.org/10.1039/C1AY05338H
14. Kompanets, O. N., Evdokimov, Yu. M., 2009. Optical biosensors of genotoxicants based on DNA nanoconstructions and portable dichrometers. Physics-Uspekhi. 179(3), pp. 329–334. (in Russian). DOI: https://doi.org/10.3367/UFNr.0179.200903o.0329
15. Koopmans, R. J., Aggeli, A., 2010. Nanobiotechnology – quo vadis? Curr. Opin. Microbiol. 13(3), pp. 327–334. DOI: https://doi.org/10.1016/j.mib.2010.01.012
16. Capitán-Vallvey, L. F., Palma A. J., 2011. Recent developments in handheld and portable optosensing – a review. Anal. Chim. Acta, 696(1–2), pp. 27–46. DOI: https://doi.org/10.1016/j.aca.2011.04.005
17. Mayeres, C. H., Lee, S. A., Pinnick, D. A., Carter, B. J., Kim, J., 1995. A study of Na-DNA films containing NaCl via scanning electron and tunneling microscopies. Biopolymers, 36(5), pp. 669–673. DOI: https://doi.org/10.1002/bip.360360512
18. Chen, G., Mohamed, G. J., 2010. Complex protein patterns formation via salt-induced self-assembly and droplet evaporation. Eur. Phys. J. E, 33(1), pp. 19–26. DOI: https://doi.org/10.1140/epje/i2010-10649-4
19. Yakhno, T. A., 2011. Complex pattern formation in sessile droplets of protein-salt solutions with low protein content. What substance fabricates these patterns? Phys. Chem., 1(1), pp. 10–13. DOI: https://doi.org/10.5923/j.pc.20110101.02
20. Yakhno, T. A., 2015. Sodium chloride crystallization from drying drops of albumin-salt solutions with different albumin concentrations. Tech. Phys., 60(11), pp. 30–37. DOI: https://doi.org/10.1134/S1063784215110262
21. Zhong, X., Crivoi, A., Duan, F., 2015. Sessile nanofluid droplet drying. Adv. Colloid Interface Sci., 217, pp. 13–30. DOI: https://doi.org/10.1016/j.cis.2014.12.003
22. Sommer, A. P., Ben-Moshe, M., Magdassi, S., 2004. Size-discriminative self-assembly of nanospheres in evaporating drops. J. Phys. Chem. B, 108(1), pp. 8–10. DOI: https://doi.org/10.1021/jp0363747
23. Raz, E., Lipson, S. G., Ben-Jacob, E., 1991. New periodic morphologies observed during dendritic growth of ammonium chloride crystals in thin layers. J. Cryst. Growth., 108(3), pp. 637–646. DOI: https://doi.org/10.1016/0022-0248(91)90243-X
24. Rozhkov, S. P., Goryunov, A. S., 2010. Thermodynamic study of protein phases formation and clustering in model water-protein-salt solutions. Biophys. Chem., 151(1–2), pp. 22–28. DOI: https://doi.org/10.1016/j.bpc.2010.04.007
25. Rozhkov, S. P., Goryunov, A. S., 2000. Effects of inorganic salts on the structural heterogeneity of serum albumin solutions. Eur. Biophys. J., 28(8), pp. 639–647. DOI: https://doi.org/10.1007/s002490050004
26. Glibitskiy, D. M., Glibitskiy, G. M., Semenov, M. A., Shestopalova, A. V., 2016. Textures of BSA films with iron and copper ions. Biophys. Bull., 35(1), pp. 21–27. DOI: https://doi.org/10.26565/2075-3810-2016-35-03.
27. Hackl, E. V., Gatash, S. V., Nikolov, O. T., 2005. Using UHF-dielectrometry to study protein structural transitions. J. Biochem. Biophys. Methods, 63(2), pp. 137–148. DOI: https://doi.org/10.1016/j.jbbm.2005.04.002
28. Glibitskiy, G. M., 2008. Na-DNA films with ions of metals. Biophys. Bull., 21(2), pp. 29–34.
29. Mandelbrot B., 1982. The Fractal Geometry of Nature. New York: W. H. Freeman and Co.
30. Smith, T. G., Jr., Lange, G. D., Marks, W. B., 1996. Fractal methods and results in cellular morphology – dimensions, lacunarity and multifractals. J. Neurosci. Methods. 69(2), pp. 123–136. DOI: https://doi.org/10.1016/S0165-0270(96)00080-5
31. Glibitskiy, G. M., Glibitskiy, D. M., Gorobchenko, O. A., Nikolov, O. T., Roshal, A. D., Semenov, M. A., Gasan, A. I., 2015. Textures on the surface of BSA films with different concentrations of sodium halides and water state in solution. Nanoscale Res. Lett., 10(1), Article ID 155. DOI: https://doi.org/10.1186/s11671-015-0860-0
32. Glibitskiy, D. M., Gorobchenko, O. A., Nikolov, O. T., Shestopalova, A. V., Semenov, M. A., 2017. Characterization of zigzag patterns on the surface of bovine serum albumin films. Biophys. Bull. 37(1), pp. 16–29. DOI: https://doi.org/10.26565/2075-3810-2017-37-03
33. Glibitskiy, D. M., 2018. Modeling of protein and salt redistribution during drying of a solution from a square cell. Biophys. Bull., 39(1), pp. 51–70. DOI: https://doi.org/10.26565/2075-3810-2018-39-05
34. Glibitskiy, D., 2018. Modeling of particle redistribution in protein-salt solution evaporating from a square cell. In: 1st Int. Symp. Mechanics. Aberdeen, UK, 9–12 July 2018. Available from: https://conferences-nscj.co.uk/abstract/files/10/abstract/me01_A0878.pdf.
35. Glibitskiy, G. M., Semenov, M. A., Glibitskiy, D. M., 2011. Texture of Na-DNA films received from solution containing Tris and EDTA. Biophys. Bull., 27(2), pp. 26–30 (in Russian).
36. Glibitskiy, G. M., Glibitskiy, D. M., 2015. A method for determining the influence of a substance on biopolymers. Ukraine. Pat. 110130 (in Ukrainian).
37. Glibitskiy, D. M., Glibitskiy, G. M., Gorobchenko, O. O., Nikolov, O. T., Semenov, M. A., 2014. Textures of BSA films with sodium halides. In: 3rd Int. Research and Practice Conf. "Nanotechnology and nanomaterials" (NANO-2014). Yaremche; Lviv, Ukraine, 23–30 Aug. 2014, p. 538.
38. Glibitskiy, G. M., Glibitskiy, D. M., Gorobchenko, O. A., Nikolov, O. T., Roshal, A. D., Semenov, M. A., 2015. Properties of films of bovine serum albumin with sodium halides. In: 4th Int. Conf. "Nanobiophysics 2015: Fundamental and Applied Aspects" (NBP-2015). Kyiv, Ukraine, 1–4 Oct. 2015, p. 44.
39. Glibitskiy, G. M., Jelali, V. V., Semenov, M. O., Roshal, A. D., Glibitskiy, D. M., Volyanskiy, O. Yu., Zegrya, G. G., 2012. Interaction of DNA with Silver Nanoparticles. Ukr. J. Phys., 57(7), pp. 695–699.
40. Glibitskiy, D. M., Zibarov, A. M., 2016. Effect of Fe(III) on BSA and its film textures. In: 2nd Int. Young Scientists Forum on Applied Physics and Engineering (YSF-2017). Kharkiv, Ukraine, 10–16 Oct. 2016. [CD-ROM].
41. Glibitskiy, D. M., Gorobchenko, O. A., Zibarov, A. M., Cheipesh, T. A., Nikolov, O. T., Roshal, A. D., Semenov, M. A., Glibitskiy, G. M., 2017. Dynamic light scattering, spectral and zigzag pattern analysis of solutions and films of BSA with FeCl3. In: 5th Int. Conf. "NANOBIOPHYSICS: Fundamental and Applied Aspects" (NBP-2017). Kharkiv, Ukraine, 2–5 Oct. 2017, p. 60.
42. Glibitskiy, D. M., Gorobchenko, O. A., Zibarov, A. M., Cheipesh, T. A., Nikolov, O. T., Roshal, A. D., Semenov, M. A., Glibitskiy, G. M., 2017. Zigzag patterns on the surface of BSA+AlCl3 films. In: 5th Int. Research and Practice Conf. "Nanotechnology and Nanomaterials" (NANO-2017). Chernivtsi, Ukraine, 23–26 Aug. 2017, p. 601.
43. Glibitskiy, D. M., Gorobchenko, O. A., Nikolov, O. T., Zibarov, A. M., Roshal, A. D., Semenov, M. A., Glibitskiy, G. M., 2016. Effect of flavin mononucleotide on the texture of BSA films. In: 4th Intern. research and practice conf. "Nanotechnology and nanomaterials" (NANO-2016). Lviv, Ukraine, 24–27 Aug. 2016, p. 132.
44. Bastian, M., Sigel, H., 1997. The self-association of flavin mononucleotide (FMN2–) as determined by 1H NMR shift measurements. Biophys. Chem., 67(1–3), pp. 27–34. DOI: https://doi.org/10.1016/S0301-4622(97)00012-4
45. Glibitskiy, D. M., Gorobchenko, O. A., Nikolov, O. T., Cheipesh, T. A., Roshal, A. D., Zibarov, A. M., Shestopalova, A. V., Semenov, M. A., Glibitskiy, G. M., 2018. Effect of gamma-irradiation of bovine serum albumin solution on the formation of zigzag film textures. Rad. Phys. Chem., 144, pp. 231–237. DOI: https://doi.org/10.1016/j.radphyschem.2017.08.019
46. Gorobchenko, O. A., Nikolov, O. T., Glibitskiy, D. M., Roshal, A. D., Shestopalova, A. V., Semenov, M. A., Glibitskiy, G. M., 2015. Effect of gamma irradiation of protein solution on the formation of film textures. In: 3rd Int. Research and Practice Conf. "Nanotechnology and nanomaterials" (NANO-2015). Lviv, Ukraine, 26–29 Aug. 2015, p. 386.
47. Glibitskiy, D., Gorobchenko, O., Nikolov, O., Cheipesh, T., Roshal, A., Zibarov, A., Semenov, M., Glibitskiy, G., 2018. Statistical differences of zigzag patterns on films obtained from gamma irradiated BSA solutions. In: 1st Int. Symp. on Mechanics. Aberdeen, UK, 9–12 July 2018. Available from: https://conferences-nscj.co.uk/abstract/files/10/abstract/me01_A0877.pdf.