• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

Products of the laboratory of computational electromagnetics: from mathematical models to antenna-feeder devices

Kirilenko, AA, D. Kulik, Y, Mospan, LP, Steshenko, SO
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine

E-mail: aakirilenko@ukr.net

https://doi.org/10.15407/rej2019.02.003
Language: russian
Abstract: 

Subject and Purpose. The study of various kinds of microwave devices and the description of the most interesting designs.

Methods and Methodology. The fast numerical-analytical methods are used in the study of devices. They allowed identifying fine physical effects and achieving the optimal characteristics of these devices. The main achievements of the laboratory of computational electromagnetics obtained in recent years are described in the paper.

Results. A simulation system based on numerical-analytical methods is developed. It covers a wide class of problems with a discrete spectrum (waveguides and periodic structures). It also includes the ability to model antenna devices excited by complex feeder systems. With its help, a wide range of passive microwave devices was designed, including frequency and polarization-selective nodes, mode and polarization converters used from microwaves up to the terahertz range. Particular attention is paid to the developments being studied in the new sections of radiophysics based on extraordinary transmission and optical activity.

Conclusions. The most interesting devices studied in the laboratory of computational electromagnetics in recent years are described in the paper. Many of them are designed for the first time.

 

Keywords: filters, numerical-analytical models, passive microwave devices, polarization converters., problem-oriented programming

Manuscript submitted 05.10.2018
Radiofiz. elektron. 2019, 24(2): 3-14
Full text  (PDF)

References: 
  1. Kirilenko, A.A., Rud, L.A., Steshenko, S.A., Tkachenko, V.I., 2005. Stepped approximation technique in the problem on polarizer based on circular waveguide with rectangular ridges. In: 5th Int. Conf. Antenna Theory and Techniques. Kyiv, Ukraine, 24‑27 May, 2005, pp. 467‑470.
  2. Kirilenko, A.A., Kulik, D.Yu., Prikolotin, S.A., Rud, L.A., Steshenko, S.A., 2013. Stepped approximation technique for designing coaxial waveguide polarizers. In: IX Int. Conf. Antenna Theory and Techniques. Odessa, Ukraine, 16–20 Sept. 2013, pp. 470‑472. DOI: https://doi.org/10.1109/ICATT.2013.6650815
  3. Kirilenko, A., Kulik, D., Rud, L., Tkachenko, V., Pramanick, P., 2001. Electromagnetic modeling of multi-layer microwave circuits by the longitudinal decomposition approach. In: IEEE MTT-S Int. Microwave Symp. Digest. Phoenix, AZ, USA, 20–24 May 2001, 2, pp. 1257‑1260. DOI: https://doi.org/10.1109/MWSYM. 2001.967121.
  4. Kirilenko, A.A., Rud, L.A., Tkachenko, V.I., Kulik, D.Yu., 2002. Evanescent-mode ridged waveguide bandpass filters with improved performance. IEEE Trans. Microwave Theory Tech., 50(5), pp. 1324–1327. DOI: https://doi.org/10.1109/22.999146.
  5. Salehi, H., Mansour, R.R., Dokas, V., 2002. Lumped-element conductor-loaded cavity resonators. In: IEEE MTT-S Int. Microwave Symposium Digest. Seattle, WA, USA, 2–7 June 2002, pp. 1601‑1604. DOI: https://doi.org/10.1109/MWSYM.2002.1012163.
  6. Kirilenko, A.A., Kulik, D.Yu., Tkachenko, V.I., 2003. The automatic mode-matching solver application by the example of complicated shape cavities design. Conf. Proc. CD-ROM, Toulouse, France, 2003, pp. 1‑3.
  7. Kulik, D.Yu., Prikolotin, S.A., Mospan, L. P., Senkevich, S. L., 2013. Compact bandpass waveguide filters based on modified split-ring resonators. Proc. 9th Int. Conf. Antenna Theory and Techniques (ICATT’13). Odessa, Ukraine, 16‑20 Sept. 2013, pp. 478‑480. DOI: https://doi.org/10.1109/ICATT.2013.6650818
  8. Kirilenko, A.A., Rud', L.A., Senkevich, S.L., Tkachenko, V.I., 1999. Synthesis and analysis of small low-frequency filters on corrugated rectangular waveguides with arbitrary distribution of the section heights. J. Commun. Technol. Electron., 44(12), pp. 1403‑1409.
  9. Kirilenko, A.A., Mospan, L.P., Tkachenko, V.I., 2005. Multislot Irises as a Tool for Frequency Response Control. J. Commun. Technol. Electron., 50(2), pp. 138‑146.
  10. Yatsuk, L.P., Nosenko, O.N., Mospan, L.P., 2004. Analysis and synthesis of slotted strips notch and bandstop filters with the aperture method. In: The Fifth Int. Kharkov Symp. Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW’2004): proc. Kharkov, Ukraine, 21–26 June 2004. Vol. 2. P. 719‑721. DOI: https://doi.org/10.1109/MSMW.2004.1346108.
  11. Don, N., Kirilenko, A., Mospan, L., 2006. A multi-aperture iris in a circular waveguide as a tool for the frequency response control. In: Proc. 36th European Microwave Conf. (EuMC). Manchester, UK, 10–15 Sept. 2006, pp. 995‑998. DOI: https://doi.org/10.1109/EUMC.2006.281090.
  12. Don, N., Kirilenko, A., Mospan, L., 2006. Layout of a multislot iris as a tool for the frequency response control. Microwave Opt. Technol. Lett., 48(8), pp. 1472–1476. DOI: https://doi.org/10.1002/mop.21734.
  13. Prikolotin, S.A., Kirilenko, A.A., 2010. Spectral characteristics of step-bended bar in a rectangular waveguide. In: 2010 Int. Kharkov Symp. Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW’2010). Kharkov, Ukraine, 21–26 June 2010. DOI: https://doi.org/10.1109/MSMW.2010.5546188.
  14. Prikolotin, S.A., Kirilenko, A.A., 2010. A novel notch waveguide filter. Microwave and Optical Technology Lett., 52(2), pp. 416–420. DOI: https://doi.org/10.1002/mop.24892.
  15. Kirilenko, A.A., Prikolotin, S.A., 2009. Resonance of total rejection produced by a thin vertical stepped conductor in rectangular waveguide. In: VII Int. Conf. Antenna Theory and Techniques (ICATT’09): proc. Lviv, Ukraine, 6–9 Oct. 2009, pp. 331‑333. DOI: https://doi.org/10.1109/ICATT.2009.4435193.
  16. Prikolotin S.A., Kirilenko A.A., 2010. Spectral characteristics of step-bended bar in a rectangular waveguide. In: 2010 Int. Kharkov Symp. Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW’2010): proc. Kharkov, Ukraine, 21–26 June 2010. DOI: https://doi.org/10.1109/MSMW.2010.5546188.
  17. Prikolotin, S.A., Kirilenko, A.A., 2011. Total transmission through an iris with wall-to-wall stepped slot placed in a rectangular waveguide. In: VIII Int. Conf. Antenna Theory and Techniques (ICATT’11). Kyiv, Ukraine, 20–23 Sept. 2011, pp. 335‑337. DOI: https://doi.org/10.1109/ICATT.2011.6170774.
  18. Prikolotin, S.A., Kirilenko, A.A., 2011. Waveguide Bandstop (Bandpass) Filters on Stepped Conductors (Slots) Sections. In: 41st European Microwave Conf. (EuMC 2011): proc. Manchester, UK, 10–13 Oct. 2011, pp. 365–368. 
  19. Mospan, L., Prikolotin, S., Kirilenko, A., 2013. Singlet Formed by Two Transversal Ridges in a Rectangular Waveguide from the Spectral Theory Point of View. In: 2013 European Microwave Conf. (EuMC 2013): proc. Nuremberg, Germany, 6–10 Oct. 2013, pp. 628–631. .
  20. Mospan, L., Prikolotin, S., Kirilenko, A., 2016. Involving the higher modes into attenuation pole generation. Spectral approach. In: 9th Int. Kharkiv Symp. Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW’2016): proc. Kharkiv, Ukraine, 20–24 June 2016. DOI: https://doi.org/10.1109/MSMW.2016.7538074.
  21. Kirilenko, A.A., Senkevich, S.L., Tkachenko, V.I., Tysik, B.G., 1994. Microwave diplexer and multiplexer design. IEEE Trans. Microwave Theory Tech., 42(7), pp. 1393–1396. DOI: https://doi.org/10.1109/22.299734.
  22. Kirilenko, A.A., Rud', L.A., Tkachenko, V.I., 1997. Iterative scheme for optimizing millimeter-wave waveguide bandpass filters. J. Commun. Technol. Electron., 42(4), pp. 381–386.
  23. Kirilenko, A.A. Tkachenko, V.I., Rud, L.A., 1998. Design of E-tee diplexers having closely spaced frequency channels in the upper part of a waveguide operating range. In: 12th Int. Conf. Microwaves and Radar (MIKON-98): conf. proc. Krakow, Poland, 20–22 May 1998, 1, pp. 43–57. DOI: https://doi.org/10.1109/MIKON.1998.737906.
  24. Kirilenko, A.A. Tkachenko, V.I., Rud, L.A., 1998. Dividing unit as K-inverter in some types of diplexers. Ibid. 1, pp. 23–26. DOI: https://doi.org/10.1109/MIKON.1998.737912.
  25. Kirilenko, A.A. Tkachenko, V.I., Rud, L.A., 1999. A systematic approach for computer aided design of waveguide E-plane diplexers. Int. J. RF Microwave Comput. Aided Eng., 9(2), pp. 104–116. DOI: https://doi.org/10.1002/(SICI)1099-047X(199903)9:2<104::AID-MMCE5>3.3.CO;2-1.
  26. Nosich, A.I., Kirilenko, A.A., Rud, L.A., Tkachenko, V.I., 2006. Overview of the Current State of Development of Antenna Modeling Methods in Ukraine and the Former Soviet Union. In: Proc. European Conf. Antennas and Propagation (EuCAP 2006). Nice, France, 6–10 Nov. 2006. DOI: https://doi.org/10.1109/EUCAP.2006.4584642
  27. Kirilenko, A.A., Kulik, D.Yu., Rud, L.A., Tkachenko, V.I., Herscovici, N., 2006. Electromagnetic modeling and design of dual-band septum polarizers. Appl. Comput. Electromagn. Soc. J., 21(2), pp. 155‑163.
  28. Rud, L.A., Shpachenko, K.S., 2012. Polarizers on a segment of square waveguide with diagonal ridges and adjustment iris. Radioelectronics and Communications Systems, 55(10), pp. 458‑463. DOI: https://doi.org/10.3103/S0735272712100044.
  29. Kirilenko, A.A., Perov, A.O., 2006. Fast full-wave solution for analysis of circular-to-rectangular-waveguide multiport junction. In: Proc. 11th Int. Conf. on Math. Methods in Electromagnetic Theory (MMET-06). Kharkiv, Ukraine, 2629 June 2006. P. 396–398. DOI: https://doi.org/10.1109/MMET.2006.1689802.
  30. Perov, A.O., Rud', L.A., Tkachenko, V.I., 2007. Orthomode transducers with a common circular waveguide. J. Commun. Technol. Electron., 52(6), pp. 626–632. DOI: https://doi.org/10.1134/S1064226907060034.
  31. Kirilenko, A.A., Rud, L.A., Kulik, D.Yu., 2009. Compact broadband 90-degree twist based on square waveguide section with two stepped corner ridges. Microwave Opt. Technol. Lett., 51(3), P. 851–854. DOI: https://doi.org/10.1002/mop.24161.
  32. Litvinov, V.R., Rud, L.A., Sverdlenko, E.A., 2010. Compact 90° twists into rectangular waveguides. Radioelectronics and Communications Systems, 53(3), pp. 162‑166. DOI: https://doi.org/10.3103/S0735272710030064.
  33. Lihan, Chen, Arsenovic, A., Stanec, J.R., Reck, T.J., Lichtenberger, A.W., Weikle, R.M. and Barker, N.S., 2011. A micromachined terahertz waveguide 90 twist. Microwave Wireless Compon. Lett., 21(5), pp. 234–236. DOI: https://doi.org/10.1109/LMWC.2011.2127467.
  34. Kirilenko, A.A., Kolmakova, N.G., Perov, A.O., Prikolotin, S.A., Derkach, V.N., 2014. Natural oscillations providing 90° polarization plane rotation by planar chiral double-slot irises. Radioelectronics and Communications System, 57(12), pp. 521–530. DOI: https://doi.org/10.20535/S0021347014120012.
  35. Kolmakova N., Prikolotin S., Perov A., Derkach V., Kirilenko A., 2016. Polarization plane rotation by arbitrary angle using D4 symmetrical structures. IEEE Trans. Microwave Theory Tech., 64(2), pp. 429–435. DOI: https://doi.org/10.1109/TMTT.2015.2509966
  36. Kulik, D.Yu., Mospan, L.P., Perov, A.O., Kolmakova, N.G., 2016. Compact-size polarization rotators on the basis of irises with rectangular slots. Telecommunications and Radio Engineering, 75(10), pp. 857–865. DOI: https://doi.org/10.1615/TelecomRadEng.v75.i10.10.
  37. Kirilenko, A.A., Steshenko, S.O., Derkach, V.N., Ostryzhnyi, Y.M., 2018. A Tunable Compact Polarizer in a Circular Waveguide. IEEE Trans. Microwave Theory Tech. DOI: https://doi.org/10.1109/TMTT.2018.2881089.
  38. Perov, A.O., Rud, L.A., Senkevich, S.L., Tkachenko, V.I., 2004. Automated design of corrugated conical horns for dual-band applications. In: Proc. Int. Conf. Math. Methods in Electromagnetic Theory (MMET-2004). Dnepropetrovsk, Ukraine, 13–17 Sept. 2004, pp. 478–480.
  39. Kirilenko, A.A., Senkevich, S.L., Steshenko, S.O., 2015. Application of the generalized scattering matrix technique for the dispersion analysis of 3D slow-wave structures. Telecommunications and Radio Engineering, 74(17), pp. 1497–1511. DOI: https://doi.org/10.1615/TelecomRadEng.v74.i17.10.
  40. Kovshov, Y.S., Ponomarenko, S.S., Kishko, S.S., Likhachev, A., Danik, A., Mospan, L., Steshenko, S., Khutoryan, E.M., Kuleshov, A.N., 2018. Effect of Mode Transformation in THz Clinotron. J. Infrared Millim. Terahertz Waves, 39(11), pp. 1055–1064. DOI: https://doi.org/10.1007/s10762-018-0534-y.