• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

Development of compact generator complexes based on terahertz clinotrons at O. Ya. Usikov IRE NAS of Ukraine

Likhachev, AA, Kishko, SA, Kovshov, YS, Danik, AA, Ponomarenko, SS, Khutoryan, EM, Kuleshov, AM, Tischenko, AC, Zavertanniy, VV, Zabrodskiy, AF, Terekhin, SM, Kudinova, TV, Kirichenko, LA, Galushko, LA, Klescheva, YS, Bezrodnaya, GS, Vlasenko, SA

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine

V. N. Karazin Kharkiv National University
4 Svobody Sq., Kharkiv, 61022, Ukraine

E-mail: jeanalexkh@gmail.com

Language: russian

Subject and purpose. This paper deals with the results recently obtained in Vacuum Electronics Department of O. Ya. Usikov Institute for Radiophysics and Electronics of National Academy of Sciences of Ukraine during the development of compact complexes for generation of electromagnetic radiation in the terahertz frequency range. These complexes with clinotrons as electromagnetic oscillators are intended for carrying out experimental researches in the field of nuclear magnetic resonance spectroscopy using the dynamic nuclear polarization technique.

Methods and methodology. To calculate the frequency characteristics, the model of the beam-wave interaction of clinotron was improved by an algorithm that takes into account mutual transformations and reflections of the surface and highest waves in clinotron electromagnetic system. The methods of statistical analysis of the experimental data of developed and tested clinotrons were applied to clarify the obtained results. The values of the space charge, the optimum oscillation phase shift for the SWS period, the length and Pierce gain parameter depending on the operating frequency were determined.

Results. Transport of the intense electron beams (EB) in slightly inhomogeneous magnetic focusing fields and interaction of EB with RF fields of SWS were investigated theoretically and experimentally. The propagation of surface and highest waves and their mutual transformations on inhomogeneities of clinotron electromagnetic systems were simulated. The RF ohmic losses caused by the surface roughness of the SWS and thermal effects caused by falling EB were studied. The generation of oscillations in packaged clinotrons in the frequency range 120…410 GHz was experimentally obtained. The developed systems demonstrate the frequency stability of the generated electromagnetic radiation at a level of 1 ... 30 ppm in the frequency range of 120...410 GHz and provide level of output power about 100 mW at a frequency of 300 GHz.

Conclusions. The ways of both output power and stability increase in THz clinotrons are proposed. Methods for reduction of the RF ohmic losses effect on the efficiency of beam-wave interaction in THz clinotrons by using multi-stage SWS and electromagnetic systems with a small length parameter have been investigated.

Keywords: clinotron, DNP-NMR spectroscopy, high-voltage power supplies, RF ohmic losses, slow-wave system, terahertz radiation

Manuscript submitted 17.12.2018
Radiofiz. elektron. 2019, 24(2): 33-48
Full text  (PDF)

1. Siegel, P.H., 2003. THz technology: An overview. Int. J. High Speed Electron. Syst., 13(2), pp. 351-394. DOI: https://doi.org/10.1142/S0129156403001776
2. Romanenko, S., Begley, R., Harvey, A.R., Hool, L., Wallace, V.P., 2017. The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential. J. R. Soc. Interface, 14(137), pp. 20170585. DOI: https://doi.org/10.1098/rsif.2017.0585
3. Vertiy, A.A., Karnaukhov, I.M., Shestoplov, V.P., 1990 Polarization of atomic nuclei using millimeter waves. Kiev: Naukova dumka Publ. (in Russian).
4. Idehara, T., Kosuga, K., Agusu, L., Ikeda, R., Ogawa, I., Saito, T., Matsuki, Y., Ueda, K., Fujiwara, T., 2010. Continuously frequency tunable high power sub-THz radiation source − gyrotron FU CW VI for 600 MHz DNP−NMR spectroscopy. J. Infrared Millimeter Waves, 31(7), pp. 775-790. DOI: https://doi.org/10.1007/s10762-010-9643-y
5. Yamazaki, T., Miyazaki, A., Suehara, T., Namba, T., Asai, S., Kobayashi, T., Saito, H., Ogawa, I., Idehara, T., Sabchevski, S., 2012. Direct observation of the hyperfine transition of ground-state positronium. Phys. Rev. Lett., 108(25), pp. 253401(5 p.). DOI: https://doi.org/10.1103/PhysRevLett.108.253401
6. Booske, J.H., Dobbs, R.J., Joye, C.D., Kory, C.L., Neil, G.R., Park, G.-S., Park, J., Temkin, R.J., 2011. Vacuum electronic high power terahertz sources. IEEE Trans. Terahertz Sci. Technol., 1(1), pp. 54-75. DOI: https://doi.org/10.1109/TTHZ.2011.2151610
7. Gorshunov, B., Volkov, A., Spektor, I., Prokhorov, A., Mukhin, A., Dressel, M., Uchida, S., Loidl, A., 2005. Terahertz BWO-spectrosopy. J. Infrared Millim. Terahertz Waves, 26(9), pp. 1217-1240. DOI: https://doi.org/10.1007/s10762-005-7600-y
8. Razavi, B., 2011. A 300-GHz fundamental oscillator in 65-nm CMOS technology. IEEE J. Solid-State Circuits, 46(4), pp. 894-903. DOI: https://doi.org/10.1109/JSSC.2011.2108122
9. TERASENSE GROUP, INC., 2018. Sub-Terahertz Sources. San Jose CA, USA. URL: http://terasense.com/wp-content/uploads/2018/02/Terahertz-Source-Datashe...
10. VIRGINIA DIODES, INC., 2018. VDI-733-Broadband-tripler-product-manual. Charlottesville VA, USA. URL: http://www.datasheetarchive.com/whats_new/488be148cc0495e067ed3381eb6f74...
11. Gershenzon, E.M., Golant, M.B., Negirev, A.A., Savel'ev, V.S., Devyatkov, N.D. ed., 1985. Millimeter and submillimeter backward wave oscillators. Moscow: Radio i svyaz' Publ. (in Russian).
12. Bratman, V.L., Dumesh, B.S., Fedotov, A.E., Makhalov, P.B., Movshevich, B.Z., Rusin, F.S., 2010. Terahertz orotrons and oromultipliers. IEEE Trans. on Plasma Science. Vol. 38, N 6. pp. 1466-1471. DOI: https://doi.org/10.1109/TPS.2010.2041367
13. Mizuno, K., Ono, S. and Shibata, Y., 1991. Two different mode interaction in electron tube with a Fabry-Perot resonator - The ledatron. IEEE Trans. Electron Devices, 20(8), pp. 749-752. DOI: https://doi.org/10.1109/T-ED.1973.17737
14. Vertiy, A.A., Ermak, G.P., Skrynnik, B.K., Khlopov, G.I., Tsvyk, A.I., Shestopalov, V.P. ed., 1991. Diffraction radiation oscillators. Kiev: Naukova dumka Publ. (in Russian).
15. Levin, G.Ya., Borodkin, A.I., Kirichenko, A.Ya., Churilova, S.A., Usikov, A.Ya. ed., 1992. Clinotron. Kiev: Naukova dumka Publ. (in Russian). DOI: https://doi.org/10.1109/EUMA.1992.335771
16. Lysenko, E.E., Pan'kov, S.V., Pishko, O.F., Chumakov, V.G., Churilova, S.A., 2010. Development of CW clinotrons for the 400...500 GHz range. Elektromagnitnye volny I elektronnye sistemy, 15(11), pp. 63-71 (in Russian).
17. Yefimov, B.P., 2007. Multi-wave resonant clinotron for millimeter range. In: V.M. Yakovenko, ed. 2007. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 12(spec. iss.), pp. 71-80 (in Russian).
18. Ponomarenko, S.S., Kishko, S.A., Khutoryan, E.M., Kuleshov, A.N., Zavertanniy, V.V., Lopatin, I.V., Yefimov, B.P., 2013. 400 GHz continuous-wave clinotron oscillator. IEEE Trans. Plasma Sci., 41(1), pp. 82-86. DOI: https://doi.org/10.1109/TPS.2012.2226247
19. Ponomarenko, S.S., Kishko, S.A., Khutoryan, E.M., Kuleshov, A.N., Yefimov, B.P., 2014. Development of 94 GHz BWO-klynotron with 3-stage grating. Telecommunications and Radio Engineering, 73(3), pp. 271-281. DOI: https://doi.org/10.1615/TelecomRadEng.v73.i3.60
20. Ponomarenko, S.S., 2014. Interaction efficiency of the electron beam with the volume-surface fields in O-type oscillators. PhD thesis ed., O.Ya. Usikov Institute for Radiphysics and Electronics, NASU (in Russian).
21. Kovshov Y., Ponomarenko, S., Kishko, S., Vlasenko, S., Lihachev, A., Lukash, A., Danik, A., Khutoryan, E.М., Kuleshov, A.N., 2017. 0.1-0.4 THz clinotron table-top modules for spectroscopy applications. In: IEEE Int. Young Scientists Forum on Applied Physics and Engineering (YSF 2017): conf. proc. Lviv, October. DOI:1 https://doi.org/10.1109/YSF.2017.8126665
22. Kuleshov, A., Ponomarenko, S., Kishko, S., Zavertanniy, V., Khutoryan, E., Yefimov, B., 2014. Sub-THz CW clinotron oscillators with increased output power. In: IEEE Int. Vacuum Electronics Conf. (IVEC 2014): conf. proc. Monterey CA, April. DOI: https://doi.org/10.1109/IVEC.2014.6857496
23. Borodkin, A.I., Kirichenko, A.Ya., Levin, G.Ya., 1961. Improving the conditions for the interaction of the electron beam with the surface wave field in the clinotron when operating in a weakly inhomogeneous magnetic field. In: A.Ya. Usikov, ed. 1961. Trudy Instituta radiofiziki i elektroniki AN UkrSSR, 9, pp. 273-277 (in Russian).
24. Kirichenko, A.Ya., Yefimov, B.P., 1967. On the question of the operation of an BWO O-type with a non-focused electron beam in a non-uniform magnetic field. In: A.Ya. Usikov, ed. 1967. Trudy Instituta radiofiziki i elektroniki AN UkrSSR, 15, pp. 130-140 (in Russian).
25. Ponomarenko, S.S., Kishko, S.A., Kuleshov, A.N., Khutoryan, E.M., Zavertanniy, V.V., Kirichenko, L.A., Tishchenko, A.S., Yefimov, B.P., 2012. Transporting of the nonrelativistic electron beams in weak inhomogeneous magnetic focusing fields for submillimeter clinotrons. Karazin HNU Vestnik. Ser. Radiofizika i elektronika, 21(1038), pp. 77-82 (in Russian).
26. Zavertanniy, V.V., Kishko, S.A., Ponomarenko, S.S., Yefimov, B.P., Zabrodskiy, A.F., Kirichenko, L.A., Kudinova, T.V., Kuleshov, A.N., 2012. Magnetic focusing system for intense electron beams of submillimeter clinotrons. Prikladnaya nelineynaya dinamika. Commun. Syst., 20(5), pp. 112-120 (in Russian). DOI: https://doi.org/10.18500/0869-6632-2012-20-5-112-120
27. Molokovsky, S.I., Sushkov, A.D. 2005. Methods of fields calculations. Intense Electron and Ion Beams. Berlin, Germany: Springer.
28. 2018. Poisson Superfish is a collection of programs for calculating static magnetic and electric fields and radio-frequency electromagnetic fields in either 2-D Cartesian coordinates or axially symmetric cylindrical coordinates. URL: http://laacg.lanl.gov/laacg/services/download_sf.phtml
29. Kovshov, Yu.S., Ponomarenko, S.S., Kishko, S.A., Lihachev, A.A., Vlasenko, S.A., Zavertanniy, V.V., Khutoryan, E.M., Kuleshov, A.N., 2017. High frequency ohmic losses in terahertz frequency range CW clinotrons. Radiofiz. elektron., 8(22)(1), pp. 68-76 (in Russian). DOI: https://doi.org/10.1615/TelecomRadEng.v76.i10.90
30. Kirley, M.P., Booske, J.H., 2015. The physics of conductivity at terahertz frequencies. In: IEEE Int. Vacuum Electronics Conf. (IVEC 2015): conf. proc. Beijing, April. DOI: https://doi.org/10.1109/IVEC.2015.7223746
31. Lebedev, I.B., 1972. Microwave equipment and devices. Moscow: Vysshaya shkola Publ. Vol. 1 (in Russian).
32. CST Computer Simulation Technology. 2018. CST Studio Suite. URL: https://www.cst.com/products/csts2
33. Woods, A.J., Ludeking, L.D., Cavey, L.W., Rhoades, D.L., 2013. MAGIC Build 3D graphical input builder. In: 19th IEEE Pulsed Power Conf. (PPC 2013): conf. proc. San Francisco CA, March. DOI: https://doi.org/10.1109/PPC.2013.6627603
34. Weinshtein, L.A., Solntsev, V.A., 1973. Lectures on microwave electronics. Moskow: Sovetskoe radio Publ. (in Russian).
35. Levush, B., Antonsen, T.M., Bromborsky, A., Lou, W.R., Carmel, Y., 1992. Theory of relativistic backward wave oscillator with end reflections. IEEE Trans. Plasma Sci., 20(3), pp. 263-280. DOI: https://doi.org/10.1109/27.142828
36. Ginsburg, N.S., Kuznetsov, S.P., Fedoseeva, T.N., 1978. Theory of transients in a relativistic BWO. Radiofizika. Commun. Syst., 21(7), pp. 1052-1052 (in Russian). DOI: https://doi.org/10.1007/BF01033055
37. Khutoryan, E., Sattorov, M., Lukin, K.A., Kwon, O.-J., Min, S.-H., Bhattachary, A.R., Baek, I.-K., Seontae, K., Yi, M., So, J., Park, G.-S., 2015. Theory of multimode resonant backward-wave oscillator with an inclined electron beam. IEEE Trans. Electron Devices, 62(5), pp. 1628-1634. DOI: https://doi.org/10.1109/TED.2015.2411680
38. Amirov, R.Sh., Bezruchko, B.P., Bulgakova, L.V., Zakharchenko, Yu.F., Zborovskiy, A.V., Isaev, V.A., Kuznetsov, S.P., Sinitsyn, N.I., Trubetskov, D.I. (ed.), Sharaevskiy, Yu.P., Shevchik, V.N. (ed.), 1975. Electronics backward wave oscillators. Saratov: Saratov University Publ. (in Russian).
39. Yevdokimenko, Yu.I., Lukin, K.A., Shestopalov, V.P., 1981. On the two-dimensional nonlinear unsteady-state theory of diffracion-radiation oscillator. Elektronnaya Tekhnika. Elektronika SVCH, 10(334), pp. 35-40 (in Russian).
40. Yefimov, B.P., Kirichenko, A.Ya., Buzhinsky, A.P., 1967. Experimental study of the influence of reflections on the frequency characteristics of BWO in millimeter range. In: A.Ya. Usikov, ed. 1967. Trudy Instituta radiofiziki i elektroniki AN UkrSSR, 15, pp. 141-157 (in Russian).
41. Yefimov, B.P., Lukin, K.A., Rakitianskii, V.A., Shestopalov, V.P., 1989. Stochastic mode interaction in an electron-wave self-oscillating system with two feedback channels. Pis'ma Zh. Tekh.Fiz., 15(18), pp. 9-12 (in Russian).
42. Kovshov, Yu.S., Kishko, S.A., Ponomarenko, S.S., Vlasenko, S.А., Novikova-Korotun, Yu.S., Zavertanniy, V.V., Kuleshov, A.N., 2016. Simulation and experimentalResearch on CW Klynotron in Frequency Range 125-135 GHz. Radiofiz. elektron., 7(21)(2), pp. 45-52 (in Russian). DOI: https://doi.org/10.1615/TelecomRadEng.v75.i14.50
43. Ponomarenko, S.S., Kovshov, Yu.S., Kishko, S.A., Novikova-Korotun, Yu.S., Khutoryan, E.M., Kuleshov, A.N., 2006. Development of compact CW clinotrons for DNP-NMR spectroscopy. In: 9th Int. Kharkiv Symp. Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW 2016): conf. proc. Kharkiv, June. DOI: https://doi.org/10.1109/MSMW.2016.7538043
44. Nusinovich, G.S., Bliokh, Yu.P., 2000. Mode interaction in backward-wave oscillators with strong end reflections. Phys. Plasmas, 7(4), pp. 1294-1301. DOI: https://doi.org/10.1063/1.873940
45. Pishko, O.F., Chumak, V.G., Churilova, S.A., 2007. Electrodynamic characteristics of the output device of the clinotron. In: V.M. Yakovenko, ed. 2007. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine. 12(spec. iss.). pp. 130-133 (in Russian).
46. Kovshov, Yu.S., Ponomarenko, S.S., Kishko, S.A., Likhachev, A., Danik, A., Mospan, L., Steshenko, S., Khutoryan, E.M., Kuleshov, A.N., 2018. Demonstration of a mode transformation effect in 300-GHz CW clinotron. In: 17th Int. Conf. Mathematical Methods in Electromagnetic Theory (MMET 2018): conf. proc. Kyiv, June. DOI: https://doi.org/10.1109/MMET.2018.8460346
47. Kovshov, Yu.S., Ponomarenko, S.S., Kishko, S.A., Likhachev, A., Danik, A., Mospan, L., Steshenko, S., Khutoryan, E.M., Kuleshov, A.N., 2018. Effect of Mode Transformation in THz Clinotron. J. Infrared Millim. Terahertz Waves, 39(11), pp. 1055-1064. DOI: https://doi.org/10.1007/s10762-018-0534-y
48. Kovshov, Yu.S., Ponomarenko, S.S., Kishko, S.A., Khutoryan, E.M., Kuleshov, A.N., 2018. Numerical simulation and experimental study of Sub-THz and THz CW clinotron oscillators. IEEE Trans. Electron Dev., 65(6), pp. 2177-2182. DOI: https://doi.org/10.1109/TED.2018.2792258
49. Lysenko, Ye.Ye., Pishko, O.F., Churilova, S.A., 1999. Experimental Research of Clinotron with Distributed Quasioptical Power Output. Radio phys. radio astron., 4(1), pp 13-20 (in Russian).
50. Borodkin, A.I., Buzik, L.M., Lysenko, E.E., 1980. The study of multi-stage slow wave systems grating type. Preprint Institute for radiophysics and electronics AS UkrSSR. No 151. Kharkov: Institute for radiophysics and electronics Publ. (in Russian).
51. Khutoryan, E.M., Ponomarenko, S.S., Kishko, S.A., Lukin K.A., Kuleshov A.N., Efimov B.P., 2013. Autooscillations in O-type oscillator at excitation of space-surface mode in resonator with a periodically inhomogeneous grating. Izv. Vyssh. Uchebn. Zaved. Prikladnaya nelineynaya dinamika, 21(2), pp. 9-19 (in Russian).
52. Kovshov, Yu.S., Khutoryan, E.M., Likhachev, A.S., Ponomarenko, S.S., Kishko, S.A., Lukin, K.A., Zavertanniy, V.V., Kudinova, T.V., Vlasenko, S.A., Kuleshov, A.N., Idehara, T., 2018. Excitation of hybrid space-surface waves in clinotrons with non-uniform grating. J. Infrared Millim. Terahertz Waves, 39(3), pp. 236-249. DOI: https://doi.org/10.1007/s10762-017-0453-3
53. Idehara, T., Kuleshov, A.N., Ueda, K., Khutoryan, E.M., 2014. Power-stabilization of high frequency gyrotrons using a double PID feedback control for applications to high power THz spectroscopy. J. Infrared Millim. Terahertz Waves, 35(2), pp. 159-168. DOI: https://doi.org/10.1007/s10762-013-0034-z
54. Kovshov, Yu.S., Kishko, S.A., Ivanov, A.I., Ponomarenko, S.S., Kuleshov, A.N., Yefimov, B.P., 2013. Stabilization of radiation frequency in submillimeter wavelenght range BWO-oscillators. Karazin HNU vestnik. Ser. Radiofizika i elektronika, 23(1094), pp. 77-83 (in Russian).