• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

Multi-frequency and multi-angle radar methods application peculiarities for parameters estimation of oil pollutions on sea surface

Matveev, АY, Velichko, SA, Bychkov, DM, Ivanov, VK, Tsymbal, VN, Yefimov, VB, Gavrilenko, AS


O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: ayamatweev2017@gmail.com 

Language: russian


Subject and purpose. Comparative analysis of multi-frequency (MFM) and multi-angle (MAM) radar methods has to be carried out in order to evaluate their measurement capabilities for parameters diagnostic of emergency oil spill on sea surface.  Methods applications are investigated in connection with possible uses in spaceborne and airborne radar systems for ocean monitoring.

Methods and methodology. The numerical simulation of modified theory of radar sea contrast in presence of surface-active film was used in the research. The simulation took into account the selected radar systems parameters, such as radio frequency, range of observation angles and radar cross-section measurement range, for monitoring of oil film with given physical properties. The analysis was provided in order to formulate applicable airborne and spaceborne radar systems parameters for the problem solution.

Results. Expected values of radar contrast for oil pollution presence are obtained, when both MFM and MAM estimating methods are applied. As shown, MAM method application is essential for oil spilling dynamics survey with oil film parameters determination. MFM method should be used for data operative retrieval of oil spill features. The examples are given that prove the methods measurement capabilities. Also, the list is provided for operating and prospective airborne and spaceborne radar systems, data of which could be used for oil spill parameters estimation by MFM and MAM methods.

Conclusions. Multi-frequency and multi-angle methods can be applied for both airborne and spaceborne systems in use, and for future multifrequency spaceborne synthetic-aperture radars. Moreover, MFM and MAM methods combination would allow to realize processing and analysis of integrated data provided by satellite systems group for emergency oil spills monitoring.

Keywords: emergency oil spill parameters diagnostics, multi-frequency and multi-angle radar methods, remote sensing

Manuscript submitted 26.11.2018
PASC 95.75.Rs & 92.20.Ny
Radiofiz. elektron. 2019, 24(3): 30-44

Full text  (PDF)

  1. Sandven, S., Kudriavtsev, V., Malinovsky, V., 2008. Development of Marine Oil Spills/slicks Satellite Monitoring System Elements for the Black Sea, Caspian Sea and Kara/Barents Seas. In: Proc. of the 2nd Workshop on Advances SAR Oceanography from Envisat and ERS Missions (SEASAR 2008). Frascati, Italy, 21–25 Jan. 2008. Rome: ESA ESPRIN. Рress_301.
  2. Lavrova, O.Yu., Kostianoy, A.G., Lebedev, S.A., 2011. Comprehensive satellite monitoring of Russia seas. Moscow: IKI RAN Publ. (in Russian).
  3. Gadimova, S., 2000. Towards the Development of an Operational Strategy for Oil Spill Detection and Monitoring in the Caspian Sea Based upon a Technical Evaluation of Satellite SAR Observations in Southeast Asia. In: Int. Archives of Photogrammetry and Remote Sensing. Amsterdam. XXXIII(Pt. B1), pp. 295–300.
  4. Ivanov, A.Yu., Dostovalov, M.Yu., Sineva, A.A., 2012. Characterization of oil pollution around the oil rocks production site in the Caspian Sea using spaceborne polarimetric SAR imagery. Izvestiya, Atmospheric and Oceanic Physics, 48(9), pp. 1014–1026. DOI: https://doi.org/10.1134/S0001433812090058
  5. Tufte, L., Trieschmann, O., Hunsänger, T., 2001. Using AirR- and Spaceborne Remote Sensing Data for the Operational Oil Spill Monitoring of the German North Sea and Baltic Sea. In: Proc. 5th Int. Airborne Remote Sensing Conf. San Francisco, California, 17–20 Sept. 2001. Available from: https://www.bafg.de/DE/08_Ref/M4/02_Fernerkundung/ 01_oelueberwachung/ FernerkundungNordOstSee.pdf?_blob=publicationFile
  6.  Boyev, А.G., Karvitsky, G.E., Matveyev, A.Ya., 1997. Evaluation of Oil Film Parameters on the Sea Surface Using Multifrequency Radar Date. Telecommunications and Radio Engineering, 51(8), pp. 4–12. DOI: https://doi.org/10.1615/TelecomRadEng.v51.i8.20
  7. De Mario, A., Ricci, G., Tesauro, M., 2001. On CFAR Detection of Oil Slicks on the Ocean Surface by a Multifrequency and/or multipolarization SAR. In: Proc. of the 2001 IEEE Radar Conf. Atlanta, Georgia, 1–3 May 2001, pp. 351–355.
  8.  Boev, А.G., Efimov, V.B., Tsymbal, V.N. ed., Yatsevich, S.Ye., Каlmykov, I.А., Кurekin, А.S., Yemelyanov, О.L., Каvelin, S.S., Sаltykov, Yu.D., Кulikovsky, О.Yu., Popel, А.М., Маtveyev, А.Ya., Yevdokimov, А.P., Кryzhаnovsky, V.V., Bychkov, D.М., Sytnik, О.V., Gаvrilenko, А.S., Konjukhov, S.N. ed., Dranovskii, V.I. ed., 2007. Radar methods and facilities for operational Earth remote sensing from airborne and spaceborne carriers. Kiev, NAS of Ukraine Publ. (in Russian).
  9. Boev, А.G., Matveev, A.Ya., 2008.  Radar method for oil pollutions on the sea surface parameters estimation. Issledovanie Zemli iz kosmosa, 5, pp. 29–36 (in Russian).
  10. Boev, А.G., Matveev, A.Ya., Bychkov, D.M., Tsymbal, V.N., 2011. Satellite radar multiangle diagnostics of oil pollutions on sea surface. In: 9th All-Russian Open Annual Conf. “Modern problems of Earth remote sensing from space”: proc. 14–18 Nov. 2011, Moscow, IKI RAN, p. 244 (in Russian).
  11. Boev, A.G., Bychkov, D.M., Matveev, A.Ya., Tsymbal, V.V., Laverov N.P. ed., Lupjan, E.A. ed., Lavrova, O.Yu. ed., 2013. Radar satellite multi-angle diagnostics of sea surface pollution. Modern problems of Earth remote sensing from space, 10(2), pp. 166–172. Moscow, IKI RAN Publ. (in Russian).
  12.  Matveev, A.Ya., Boev, А.G., Bychkov, D.M., Kubryakov, A.A., Stanichny, C.V., Tsymbal, V.N., Chelikhovsky, S.V., 2013. Examination of oil spreading model in the problem of radar multiangle diagnostic of sea surface pollutions. In: 11th All-Russian Open Annual Conference “Modern problems of Earth emote sensing from space”: proc. Moscow, Russian Federation, 11–15 Nov. 2013. Moscow, IKI RAN (in Russian).
  13.  Matveev, A.Ya., Kubryakov, A.A., Boev, А.G., Bychkov, D.M., Velichko, S.A., Ivanov, V.K., Stanichny, S.V., Tsymbal, V.N., 2015. Validation of spaceborne radar multi-angle method for the sea surface oil pollutions diagnostics. Radiofiz. Elektron., 6(20)(2), pp. 20–31 (in Russian). DOI: https://doi.org/10.15407/rej2015.02.020
  14.  Matveev, A.Ya., Kubryakov, A.A., Boev, А.G., Bychkov, D.M., Ivanov, V.K., Stanichny, S.V., Tsymbal, V.N., 2016. Testing of the Oil Drift Model Fots Using Radar Multiangle Diagnosis of the Sea Surface Pollution. Issledovanie Zemli iz kosmosa, 1–2, pp. 213–224 (in Russian).
  15. Matveyev, A.Ya., Kubriakov, А.А., Boyev, A.G., Bychkov, D.М., Velichko, S.А., Ivanov, V.K., Stanichny, S.V. & Tsymbal, V.N., 2016. Radar remote sensing multiangular satellite radar diagnostics of oil spills on the sea surface: validation of the method. Telecommunications and Radio Engineering, 75(4), pp. 313–331. DOI: https://doi.org/10.1615/TelecomRadEng.v75.i4.30
  16. Matveyev, A.Ya., Kubryakov, А.А., Boyev, A.G., Bychkov, D.M., Ivanov, V.K., Stanichny, S.V. and Tsymbal, V.N., 2016. Modeling of Oil Spreading in a Problem of Radar MultiAngle Diagnostics of Sea Surface Pollutions. Izvestiya, Atmospheric and Oceanic Physics, 52(9), pp. 940–950. DOI: https://doi.org/10.1134/S0001433816090188
  17.  Satellite Altimetry Data AVISO [online]. Available at: http://.aviso.oceanobs.com. https://www.aviso.altimetry.fr/en/data.html
  18.  Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D.B., Casey, K.S. and Schlax, M.G., 2007. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Climate, 20 (22), pp. 5473–5496. DOI: https://doi.org/10.1175/2007JCLI1824.1
  19. Kanamitsu, M., Ebisuzaki, W., Woolen, J., Yang, S.-K., Hnilo, J.J., Fiorino, M., Potter, G.L., 2002. NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83(11), pp. 1631–1643. DOI: https://doi.org/10.1175/BAMS-83-11-1631(2002)083<1631:NAR>2.3.CO;2
  20.  Boev, A.G., Karvitsky, G.E., 1997. On Theory of Radar Sea Contrast in presence of Surface-Active Film. Radiophysika and radioastronomy, 2(3), pp. 281–291.
  21. Boev, A.G., Yasnitskaya, N.N., 2002. Attenuation coefficient for surface waves under the surface-active substance film with finite hydrodynamic thickness. Prykladna Gidromekhanika, 4(4), pp. 14–22 (in Russian).
  22. Boev, A.G., Yasnitskaya, N.N., 2003. Sea-wave suppression by a finite-thickness film of a surface-active matter. Izvestiya, Atmospheric and Oceanic Physics, 39(1), pp. 118–126.
  23. Levich, V.G., 1959. Physicochemical hydrodynamics. Moscow: GIFML Publ. (in Russian).
  24. Envisat ASAR Brochure - DHI-GRAS [online]. Available from: www.dhi-gras.com/-/media/.../Envisat_asar_ brochure.pdf
  25. Oil spill response field manual [online]: ExxonMobil. Available from: https://cdn.exxonmobil.com/~/media/global/files/energy-and-environment/o... manual_2014_e.pdf
  26. Belobrova, M.V., Boev, A.G., Kabanov, A.V., Matveev, A.Ya., Tsymbal, V.N., 2009. On-line map-making and diagnostics of oil pollutions of the sea surface using multifrequency radar data. Kosmichna nauka i tekhnologіya, 15(5), pp. 24–33 (in Russian). DOI: https://doi.org/10.15407/knit2009.05.024.
  27. Kalmykov, A.I., Tsymbal, V.N., Kurekin, A.S., Yefimov, V.B., Matveyev, A.Ya., Gavrilenko, A.S., Igolkin, V.V., 1998. Multipurpose airborne earth’s remote sensing radar system “MARS”. Radio phys. radio astron., 3(2), pp. 119–129 (in Russian).
  28. Satellite Missions Database [online]. Available from: https://earth.esa.int/ web/eoportal/ satellite-missions
  29. Way, J., Smith, E.A., 1991. The Evolution of synthetic aperture sadar system and their progression to the EOS SAR. IEEE Trans. Geosci. Remote Sens., 29(6), pp. 962–985. DOI: https://doi.org/10.1109/36.101374.
  30. Kolesnikov, S.G., Shumeiko, V.N., 2013. The role of International Charter on Space and Major Disasters in providing emergency situations monitoring [online]. Research Center for Earth Operative Monitoring OAO “Russian space systems”. Available at: http://www.ntsomz.ru/files/ kolesnikov%20s._15.11.2013.pdf (in Russian).
  31. Grüner, K., Reuter, R., Smid, H., 1991. A New Sensor System for Airborne Measurements of Maritime Pollution and Hydrografic Parameters. GeoJournal, 24(1), pp. 103–107. DOI: https://doi.org/10.1007/BF00213062
  32. Bondur, V., Tsidilina, M., 2005. Features of space and under-satellite databases formation for monitoring of anthropogenic effect on coastal zones ecosystems. In: Proc. of 31st Int. Symp. Remote Sensing of Environment, 20–24 June 2005. Saint Petersburg, Russian Federation. Available from: http://www.aerocosmos.info/pdf/ bondur% 20_sidilina.pdf (in Russian).
  33. Wikipedia. RQ-4 Global Hawk. Available at: https://ru.wikipedia. org/ wiki/ RQ-4_Global_Hawk (in Russian).
  34. Valagin, А., 2015. Russian drone will make stealth planes useless. Russian weapons. Available at: https://rg.ru/2015/08/31/bla-site.html (in Russian).
  35. Keydel, W., 2006. Present and Future Airborne and Space-borne Systems. Part of Nato-PTO-Lecture on “Radar Polarimetry and Interometry”, RTO-EN-SET-081bis-PP, presented on 21 to 22 March, 2006, Warsaw, Poland, pp. 1–22.
  36. Pilon, R.O., Purves, C.G., 1973. Radar imagery of oil slicks. IEEE Trans. Aerosp. Electron. Syst., 9(5), pp. 630–636. DOI: https://doi.org/10.1109/TAES.1973.309743