• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

Using the package of micromagnetic simulation mumax3 to determine the frequency dispersion of the magnetic nanostructures high-frequency magnetic susceptibility - elements of the microwave metamaterials

Nedukh, SV


O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine

E-mail: sv_grey@ire.kharkov.ua

V.N. Karazin Kharkiv National University
4, Svobody Sq., Kharkiv, 61022, Ukraine

Language: russian


Subject and purpose. In this paper, a technique of determining the elements of the high-frequency susceptibility tensor for a magnetic nanostructure under the conditions of simultaneous applying of external DC and high-frequency AC magnetic fields is proposed.

Methods and methodology. During the research, a numerical solution of the Landau–Lifshitz–Hilbert equations was used with help of the mumax3 micromagnetic simulation package. The advantage of this package is the use of discrete computer video card resources to speed up the solution of equations.

Results. As an example, the form of the frequency dispersion of the components of the magnetic susceptibility tensor under conditions of resonant excitation of the magnetization precession for a single nano-sized permalloy disk 500 and 3000 nm in diameter using the micromagnetic simulation package was obtained.

Conclusions. The demonstrated approach makes possible to use the results of micromagnetic modeling for further tasks of electromagnetic properties modeling of promising planar microwave metamaterials based on nanoscale elements from a magnet.

Keywords: high-frequency magnetic susceptibility, magnetic nanostructures, microwave metamaterials

Manuscript submitted 01.07.2019
PACS: 03.50.De, 75.75.Jn, 75.30.Cr, 75.78.-n
Radiofiz. elektron. 2019, 24(4): 3-10
Full text (PDF)

1. Engheta, N. ed., Ziolkowski, R.W., 2006. Metamaterials: Physics and Engineering Explorations. Wiley-IEEE Press.
DOI: https://doi.org/10.1002/0471784192
2. Caloz, C., 2016. Ten applications of metamaterials. In: 2016 IEEE Int. Symp. Antennas and Propagation. (APSURSI). Fajardo, Puerto Rico, 26 June - 1 July 2016. Fajardo: IEEE. DOI: https://doi.org/10.1109/APS.2016.7696357
3. Gangwar, K., Paras, D., Gangwar, P., 2014. Metamaterials: Characteristics, Process and Applications. Advance in Electronic and Electric Engineering (AEEE), 4(1), pp. 97-106.
4. Shelby, R. A., Smith, D. R., Schultz, S., 2001. Experimental Verification of a Negative Index of Refraction. Science, 292(5514), pp. 77-79. DOI: https://doi.org/10.1126/science.1058847

5. Ebels, U., Duvail, J.L., Wigen, P.E., Piraux, L., Buda, L.D., Ounadjela, K., 2001. Ferromagnetic resonance studies of Ni nanowire arrays. Phys. Rev. B., 64(14), pp. 144421(6 p.). DOI: https://doi.org/10.1103/PhysRevB.64.144421

6. Makeeva, G.S., Pardavi-Horvath, M., Golovanov, O.A., 2009. Tuning the Scattering Parameters of Magnetic Nanowire Arrays Near the Antiresonance at Photonic Frequencies. IEEE Trans. Magn., 45(10), pp. 4074-4076. DOI: https://doi.org/10.1109/TMAG.2009.2023612
7. Boucher, V., Carignan, L.-P., Kodera, T., Caloz, C., Yelon, A., Menard, D., 2009. Effective permeability tensor and double resonance of interacting bistable ferromagnetic nanowires. Phys. Rev. B., 80(22), pp. 224402(11 p.). DOI: https://doi.org/10.1103/PhysRevB.80.224402
8. Rajagopalan, S., Furdyna, J. K., 1989. Magnetic dimensional resonances in Fe3O4 spheres. Phys. Rev. B., 39(4), pp. 2532-2540. DOI: https://doi.org/10.1103/PhysRevB.39.2532
9. Ramprecht, J., Sjoberg, D., 2008. Magnetic losses in composite materials. J. Phys. D: Appl. Phys., 41(13), pp. 135005(9 p.). DOI: https://doi.org/10.1088/0022-3727/41/13/135005
10. Albuquerque, E.L., Fulco, P., Sarmento, E.F., Tilley, D.R., 1986. Spin waves in a magnetic superlattice. Solid State Commun., 58(1), pp. 41-44. DOI: https://doi.org/10.1016/0038-1098(86)90883-5
11. Pendry, J.B., Holden, A J., Robbins, D.J., Stewart, W.J., 1999. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans.Microwave Theory Tech., 47(11), pp. 2075-2084. DOI: https://doi.org/10.1109/22.798002
12. Vansteenkiste, A., Leliaert, J., Dvornik, M., Helsen, M., Garcia-Sanchez, F., Van Waeyenberge, B., 2014. The design and verification of mumax3. AIP Advances, 4, pp. 107133(22 p.). DOI: https://doi.org/10.1063/1.4899186
13. Dmytriiev, O., Dvornik, M., Mikhaylovskiy, R.V., Franchin, M., Fangohr, H., Giovannini, L., Montoncello, F., Berkov, D.V., Semenova, E.K., Gorn, N.L., Prabhakar, A., Kruglyak, V.V., 2012. Calculation of high-frequency permeability of magnonic metamaterialsbeyond the macrospin approximation. Phys. Rev. B., 86(10), pp. 104405(11 p.). DOI: https://doi.org/10.1103/PhysRevB.86.104405