• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

Space-borne radar observation of near-surface wind effect on anomalously highly-directional backscattering of radio waves from aeolian processes of sand and dust transporting in desert regions

Bychkov, DM, Ivanov, VK, Matveev, AY, Tsymbal, VN, Yatsevich, SE


O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine

E-mail: sey1959sey@gmail.com

Language: russian


Subject and purpose. The purpose of this work is to study the effect of wind on the anomalous scattering of radio waves during aeolian processes of sand and dust transporting.

Мethods and methodology. The article analyzes the spatial variations of the near-surface wind and their effect on the characteristics of anomalously narrowly directed radio wave backscattering according to the long-term studies of desert regions of Al-Jouf, Akshar and Trarza in Mauritania by Envisat-1 satellite SAR.

Results. Analysis of SAR data indicates that intensity of radio wave scattering on the leeward slopes of sand ridges is more than 12...15 dB higher than the one from the slopes located in the "wind shadow" zone, which indicates the direct influence of the surface wind on the back scattering of radio waves during aeolian sand and dust transportation. The dependences of changes in the backscattering coefficient s 0 on the angle of local irradiation q along sections of fragments of homogeneous sections of the surface radar images are obtained.

Conclusion. SAR data indicate that the spatial distribution of the maximum intensity values of anomalously narrowly directed backscattering of radio waves corresponds to the spatial distribution of the near-surface wind. The intensity of backscattering of radio waves, starting at a speed of 2 m/s and higher, steadily depends on the wind speed.

Keywords: aeolian transport of sand and dust, anomalously narrowly directed backscattering of radio waves, near-surface wind, radar observation

Manuscript submitted 10.04.2019
PACS 07.87.+v; 84.40.−x; 89.60.Gg;  92.60.Mt; 92.60.Sz
Radiofiz. elektron. 2020, 25(1): 21-27
Full text (PDF)

 1. Lancaster, N., 2009. Aeolian features and processes. The Geological Society of America, pp. 1-25. URL: https://www.nature.nps.gov/geology/monitoring/files/geomon-01.pdf
2. Ivanov, V.K., Matveyev, A.Ya., Tsymbal, V.N., Yatsevich, S.Ye., 2015. Radar Investigations of the Aeolian Sand and Dust Transporting Manifestations in Desert Areas. Telecommunications and Radio Engineering, 74(14), pp. 1269-1283. DOI: https://doi.org/10.1615/TelecomRadEng.v74.i14.40
3. Ivanov, V.K., Matveyev, A.Ya., Tsymbal, V.N., Yatsevich, S.Ye. and Bychkov, D.M., 2016. Radar identification of desert regions as suppliers of dust in the atmosphere. Telecommunications and Radio Engineering, 75(10), pp. 937-948. DOI: https://doi.org/10.1615/TelecomRadEng.v75.i10.70
4. Ivanov, V.K., Matveyev, A.Ya., Tsymbal, V.N., Yatsevich, S.Ye. and Bychkov, D.M., 2016. Spaceborne radar identification of desert regions as suppliers of dust into the atmosphere. Ukrainian journal of remote sensing, 11, pp. 39-47.
5. Archiv-Version des Animationstools. URL: http://www.wetter3.de/Archiv/index.html.
6. Kok, J.F., Renno, N.O., 2008. Electrostatics in Wind-Blown Sand. Phys. Rev. Lett., 100(1), pp. 014501(4 p.). DOI: https://doi.org/10.1103/PhysRevLett.100.014501
7. Stow, C.D., 1969. Dust and sand storm electrification. Weather, 24(4), pp. 134-137. DOI: https://doi.org/10.1002/j.1477-8696.1969.tb03165.x
8. Namikas, S.L., 2003. Field measurement and numerical modelling of aeolian mass flux distributions on a sandy beach. Sedimentology, 50(2), pp. 303-326. DOI: https://doi.org/10.1046/j.1365-3091.2003.00556.x
9. Kok, J.F., 2009. Understanding wind-blown sand and the electrification of granular systems. A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Applied Physics) in The University of Michigan. [pdf]. Available at: https://pdfs.semanticscholar.org/1ba8/e7195fcad058d4af665043989ac5d9f9cf...
10. Zheng, X.J., 2013. Electrification of wind-blown sand: Recent advances and key issues. Eur. Phys. J. E, 36(12), 15 p. DOI: https://doi.org/10.1140/epje/i2013-13138-4
11. Greeley, R., Blumberg, D.G., Williams, S.H., 1996. Field measurements of the flux and speed of wind-blown sand. Sedimentology, 43(1), pp. 41-52. DOI: https://doi.org/10.1111/j.1365-3091.1996.tb01458.x
12. Fortov, V.E., Khrapak, A.G., Khrapak, S.A., Molotkov, V.I., Petrov, O.F., 2004. Dusty plasmas. Phys. Usp., 47(5), pp. 447-492. DOI: https://doi.org/10.1070/PU2004v047n05ABEH001689
13. Haddad, S., Salman, M.J.H., Jha, R.K., 1983. Effects of Dust Sandstorms on Some Aspects of Microwave Propagation. Proc. URSI Comm. F Symp., Louvain-la-Neuve, Belgium, ESA Publ., SP-194, pp. 153-161.
14. You-He Zhou, Qin Shu He, Xiao Jing Zheng, 2005. Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles. Eur. Phys. J. E, 17(2), pp. 181-187. DOI: https://doi.org/10.1140/epje/i2004-10138-5
15. Mohd Taufik Jusoh Tajudin, 2014. Study and design of reconfigurable antennas using plasma medium. Electronics. Université Rennes 1, 2014. English. URL: https://tel.archives-ouvertes.fr/tel-01060295/document.