• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

Modification of sattelite radar multi-angle method for measuring parameters of emergency oil spills on the sea

Matveev, AY, Velichko, SA, Bychkov, DM, Ivanov, VK, Tsymbal, VN, Yefimov, VB, Gavrilenko, AS
Organization: 

 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine

E-mail: ayamatweev2017@gmail.com

https://doi.org/10.15407/rej2020.02.009
Language: russian
Abstract: 

 

Subject and purpose. The paper seeks to develop a modified satellite radar multi-angle method (MMAM) for measuring parameters of emergency oil spills on the sea surface and, also, a technique for the determination of the main and auxiliary design parameters. Employed are radar images from synthesized aperture radar Envisat-1 surveying the oil poduction area Neftyanye Kamni in the Caspian Sea in terms of the joint project id: CIP11140 with European Space Agency.

Methods and methodology. Numerical modeling is performed for equation parameters in the modified radar-contrast theory of sea roughness in the oil film presence. Methodologies have been worked out which enable the preliminary data to be derived from the Envisat-1 radar images of oil spills and allow the volume and thickness of the initial and final oil spills to be estimated upon these data.

Results. From two successive radar surveys of the initial and final oil spills on the sea, the volume, thickness and surface activity of the initial and final oil spills have been determined. The parameterization of the basic oil characteristics has simplified matters with the calculations and analysis of the results. It has been shown that the oil evaporation requires that the oil film activity and the surface tension coefficients be simulated at the oil-water and oil-air interfaces, for the physical characteristics of the spreading oil vary over time. Every step of the simulation is supported with the graphic data.

Conclusions.  The suggested MMAM method can be employed in the airborne and spaceborne systems monitoring emergency oil spills on the sea surface. With the modern methods of data processing and presentation, the MMAM can be adopted by a wide range of consumers.

 

Keywords: diagnostics of emergency oil spill parameters, satellite modified multi-angle radar method, sea surface radar monitoring

Manuscript submitted 20.08.2019
PACS: 95.75.-z
Radiofiz. elektron. 2020, 25(2): 9-21
Full text (PDF))

References: 
  1. 1. Sandven, S., Kudriavtsev, V., Malinovsky, V., 2008. Development of Marine Oil Spills/Slicks Satellite Monitoring System Elements for the Black Sea, Caspian Sea and Kara/Barents Seas. In: Proc. 2nd Workshop on Advances SAR Oceanography from Envisat and ERS Missions (SEASAR 2008). Frascati, Italy, 21-25 Jan. 2008. Rome: ESA ESPRIN. Press_301.
     
    2. Gadimova, S., 2000. Towards the Development of an Operational Strategy for Oil Spill Detection and Monitoring in the Caspian Sea Based upon a Technical Evaluation of Satellite SAR Observations in Southeast Asia. In: Int. Archives of Photogrammetry and Remote Sensing. Amsterdam. XXXIII(Pt. B1), pp. 295-300.
     
    3. Tufte, L., Trieschmann, O., Hunsänger, T., Kranz, S., Barjenbruch, U., 2001. Using AirR- and Spaceborne Remote Sensing Data for the Operational Oil Spill Monitoring of the German North Sea and Baltic Sea: Proc. 5th Int. Airborne Remote Sensing Conf., San Francisco, California, 17-20 Sept. 2001. Available from: https://www.bafg.de/DE/08_Ref/ M4/02_Fernerkundung/01_oelueberwachung/FernerkundungNordOstSee.pdf?__blob=publicationFile
     
    4. Boev, А.G., Tsymbal, V.N., Matveyev, A.Ya., Yefimov, V.B., Bychkov, D.M., Kalmykov, I.A., Yatsevich, S.Ye., Ivanov, V.K. ed. 2017. Aerospace radar diagnostics of natural disasters and critical situations: monograph. Kharkov: Publishing House Rozhko S.G. (in Russian).
     
    5. De Mario, A., Ricci, G., and Tesauro, M., 2001. On CFAR Detection of Oil Slicks on the Ocean Surface by a Multifrequency and/or multipolarization SAR. In: Proc. 2001 IEEE Radar Conf. Atlanta, GA, USA, 1-3 May 2001. Atlanta: IEEE, pp. 351-355.
     
    6. Ivanov, A.Yu., Dostovalov, M.Yu., and Sineva, A.A., 2012. Characterization of oil pollution around the oil rocks production site in the Caspian Sea using spaceborne polarimetric SAR imagery. Izv. Atmos. Ocean. Phys., 48(9), pp. 1014-1026. DOI: https://doi.org/10.1134/S0001433812090058.
     
    7. Boev, A.G., Bychkov, D.M., Matveyev, A.Ya., Tsymbal, V.N., Laverov, N.P. ed., Lupjan, E.A. ed., Lavrova, O.Yu. ed., 2013. Radar satellite multi-angle diagnostics of sea oil pollution. Sovr. Probl. DZZ Kosm., 10(2), pp.166-172 (in Russian).
     
    8. Matveyev, A.Ya., Velichko, S.A., Bychkov D.M., Ivanov, V.K., Tsymbal, V.N., Yefimov, V.B., Gavrilenko, A.S., 2019. Multi-frequency and multi-angle radar methods application peculiarities for parameters estimation of oil pollutions on sea surface. Radiofiz. elektron., 24(3), pp. 30-44. DOI: https://doi.org/10.15407/rej2019.03.030.
     
    9. Fay, J.A., 1969. The spread of oil slicks on a calm sea. In: Oil on the sea. New York, Plenum Press, pp. 53-63. DOI: https://doi.org/10.1007/978-1-4684-9019-0_5
     
    10. Korotenko, K.A., Mamedov, R.M., 2001. Modelling of oil spill propagation in the near-shore area of the Caspian Sea. Oceanology, 41(1), pp. 45-52 (in Russian).
     
    11. Lehr, W., Jones, R., Evans, M., Simecek-Beatty, D., Overstreet, R., 2002. Revisions of the ADIOS oil spill model. Environ. Model. Softw., 17, pp. 191-199. DOI: https://doi.org/10.1016/S1364-8152(01)00064-0.
     
    12. Hai-zhou, Chen, Da-ming, Li, Xiao, Li, 2007. Mathematical modeling of the oil spill on the sea and application of the modeling in Daya Bay. J. Hydrodynamics, 19(3), pp. 282-291. DOI: https://doi.org/10.1016/S1001-6058(07)60060-2.
     
    13. Liungman, O., Mattson, J., 2011. Scientific Documentation of Seatrack Web
     
    physical processes, algorithms and references. [pdf] Sweden: Norrkoping, 2011. 32 p. Available at: http://www.smhi.se/polopoly_fs/1.15600!SeatrackWebScientificDocumentatio...
     
    14. Matveev, A.Ya., Boev, A.G., Bychkov, D.M., Kubryakov, A.A., Stanichny, C.V., Tsymbal, V.N., Chelikhovsky, S.V., 2013. Examination of oil spreading model in the problem of radar multiangle diagnostic of sea surface pollutions. In: 11th All-Russian Open Annual Conference "Modern problems of Earth remote sensing from space": proc. Moscow, Russian Federation, 11-15 Nov. 2013. Moscow, IKI RAN (in Russian).
     
    15. Ivanov, V.K. ed., 2018. Aerospace radar diagnostics of natural disasters and critical phenomena. Part 2. Mauritius, Germany: LAP Lambert Academic Publ.
     
    16. Matveev, A.Ya., Kubryakov, A.A., Boev, A.G., Bychkov, D.M., Ivanov, V.K., Stanichny, S.V., Tsymbal, V.N., 2016. Modeling of Oil Spreading in a Problem of Radar MultiAngle Diagnostics of Sea Surface Pollutions. Issledovanie Zemli iz Kosmosa, 1-2, pp. 213-224 (in Russian).
     
    17. Matveyev, A.Ya., Kubriakov, A.A., Boyev, A.G., Bychkov, D.M., Velichko, S.A., Ivanov, V.K., Stanichny, S.V., Tsymbal, V.N., 2016. Radar remote sensing multiangular satellite radar diagnostics of oil spills on the sea surface: validation of the method. Telecommunications and Radio Engineering, 75(4), pp. 313-331. DOI: https://doi.org/10.1615/TelecomRadEng.v75.i4.30.
     
    18. Wang, Z.D., Hollebone, B.P., Yang, C., Fieldhouse, B.G., Fingas, M.F., Landriault, M., Gamble, R.L., Peng, X., and Weaver, J., 2005. Oil Composition and Properties for Oil Spill Modelling. In: Proc. of the 28th AMOP Technical Seminar. (Calgary, Alberta, Canada, 7-9 June 2005). Ottawa: Environment Canada, 1, pp. 93-112. DOI: https://doi.org/10.7901/2169-3358-2005-1-671.
     
    19. Jordan, R.E., Payne, J.R., 1980. Fate and Weathering of Petroleum Spills in the Marine Environment: A Literature Review and Synopsis. Michigan: Ann Arbor Science Publishers.
     
    20. Fingas, M., 1997. Studies on the Evaporation of Grude Oil and Petroleum: I. The Relationship Between Evaporation Rate and Time. J. Haz. Mat., 56(3), pp. 227-236. DOI: https://doi.org/10.1016/S0304-3894(97)00050-2.
     
    21. Wang, Z., Hollebone, B.P., Fingas, M., Fieldhouse, B., Sigouin, L., Landriault, M., Smith, P., Noonan, J., Thouin, G., 2003. Characteristics of Spilled Oils, Fuels, and Petroleum Products: 1. Composition and Properties of Selected Oils. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/R-03/072, 2003. Available in: http://www.epa.gov/ athens/publicatons. DOI: https://doi.org/10.7901/2169-3358-2003-1-1131
     
    22. Ermakov, S.A., 2010. Influence of surfactant films on dynamics of gravity-capillary waves. N. Novgorod: IAP RAS (in Russian).
     
    23. Ermakov, S.A., Sergievskaya, I.A., and Gushchin, I.A., 2006. Films on the Sea Surface and Their Remote Sensing. Sovr. Probl. DZZ Kosm., 3(2), pp. 86-98 (in Russian).
     
    24. Ermakov, S.A., Sergievskaya, I.A., and Gushchin, I.A., 2012. Damping of Gravity-Capillary Waves in the Presence of Oil Slicks According to Data from Laboratory and Numerical Experiments. Izv. Atmos. Ocean. Phys., 48(5), pp. 565-572. DOI: https://doi.org/10.1134/S000143381204007X
     
    25. Sergievskaya, I., Ermakov, S., Lazareva, T., Guo, J., 2019. Damping of surface waves due to crude oil/oil emulsion films on water. Marine Pollution Bulletin, 146, pp. 206-214. DOI: https://doi.org/10.1016/j.marpolbul.2019.06.018.
     
    26. NOMADS data archive. Available at: http://nomads.ncep.noaa.gov/
     
    27. Oceandata data archive. Available at: http://oceandata.sci.gsfc.nasa.gov/
     
    28. Levich, V.G., 1959. Physico-chemical hydrodynamics. Moscow: State publishing house of technical and theoretical literature (in Russian).
     
    29. Savitskaya, T.A., Shimanovich, M.P., 2003. Workshop on colloid chemistry. Part 1. "Surface phenomena" Minsk: BSU Publ. (in Russian).
     
    30. The Oil Spill Response Competence Center in the Arctic. Laboratory for the study of the characteristics of oil. Available at: http://osr-arctic.ru/ru/matrica-kompetencii-resursy/laboratoriya-dlya-is... (in Russian)
     
    31. Surface tension. Available at: www.homedistiller.ru/poverhnostnoe-natjazhenie.html (in Russian)
     
    32. Geology. Molecular - surface properties of the system oil-gas-water-rock. Available at: https://studopedia.ru/ 3_63468_molekulyarno-poverhnostnie-svoystva-sistemi-neft-gaz-voda-poroda.html (in Russian)