• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

Features of electron spin resonance in biological objects of Pleurotus ostreatus grown on a substrate with magnetite injection

Kalmykova, TV, Tarapov, SI, Vakula, AS, Gorobets, SV, Gorobets, OY, Gorobets, YI, Bulaevskaya, MA, Getmanenko, KA
Organization: 

 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine

E-mail: tanya.kalmykova1@gmail.com 

Kharkiv National University of Radio Electronics
14, Nauky Ave., 61166, Kharkiv, Ukraine

V. Karazin Kharkiv National University
4, Svobody Sq., 61022, Kharkiv, Ukraine

Igor Sikorsky Kyiv Polytechnic Institute
37, Prosp. Peremohy, 03056, Kyiv, Ukraine

Institute of Magnetism NASU and MES of Ukraine
36-b, Acad. Vernadskiy Blvd., 03142, Kyiv, Ukraine

https://doi.org/10.15407/rej2020.02.038
Language: russian
Abstract: 

 

Subject and Purpose. Synthesis of biological sorbents has become one of the ways to solve the problem of environment contamination with heavy metals. Today, studying properties of biosorbents with injection of magnetic nanoparticles is important. Thus, injection of magnetic nanoparticles of magnetite (Fe3O4) improves absorption properties of biosorbents.  The subject of the present work is magnetic resonance properties of nanoparticles inside biosorbents, such as macromycetes like Pleurotus ostreatus. The purpose is to examine these magnetic resonance properties and analyze the state of magnetite nanoparticles inside Pleurotus ostreatus.

Methods and Methodology. The X-band Electron Spin Resonance (ESR) method is employed to register ferromagnetic resonance (FMR) spectra at T = 294 K. TEM-images of magnetic nanoparticles are made in the transmission electron microscope. Mathematical modeling for the properties of the arising clusters of magnetic Fe3O4 nanoparticles inside macromycetes Pleurotus ostreatus is performed using a phenomenological model upon the well-known Kittel equation. A model enhancement is proposed in the case of interacting nanoparticles inside an ellipsoidal magnetic cluster.  

Results. It has been shown that Fe3O4 nanoparticles are well absorbed by macromycetes and gather into structural clusters regardless of the concentration of magnetic nanoparticles injected. These magnetic clusters of magnetic nanoparticles have ellipsoidal shapes with an aspect ratio of 3:1:1. The developed mathematical model makes it possible to obtain dimensions of magnetic clusters from the FMR spectra and evaluate their shape and mutual magnetic interaction. The mathematical modeling results are in good agreement with TEM-images of these clusters inside Pleurotus ostreatus. As a result of modeling are in good agreement with the TEM-images of these clusters inside Pleurotus ostreatus.

Conclusion. The presented results will contribute to the development of non-destructive testing of the state of biological sorbents using magnetic resonance radio spectroscopy methods.

Keywords: biosorbent, electron spin resonance, ferromagnetic resonance, magnetite, Pleurotus ostreatus

Manuscript submitted 20.08.2019
Radiofiz. elektron. 2020, 25(2): 38-45
Full text (PDF)

References: 

1. Markova, M.E., Uryash, V.F., Stepanova, E.A., Gruzdeva, A.E., Grishatova, N.V., Demarin, V.T., Tumanova, A.N., 2008. An original source: Sorption of heavy metals higher fungi and chitin of different origin in vitro experiments. Bulletin of Nizhny Novgorod University, 6, pp. 118-124 (in Russian).
 
2. Stihi, C., Radulescu, C., Busuioc, G., Popescu, I.V., Gheboianu, A., Ene, A., 2011. Studies on Accumulation of Heavy Metals from Substrate to Edible Wild Mushrooms. Rom. J. Phys., 56(1-2), pp. 257-264.
 
3. Javaid, A., Bajwa, R., Shafique, U., Anwar, J., 2011. Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioenergy, 35(5), pp. 1675-1682. DOI: https://doi.org/10.1016/j.biombioe.2010.12.035.
 
4. Abdul-Talib, S., Tay, C.C., Abdullah-Suhaimi, A., Liew H.H., 2013. Fungal Pleurotus ostreatus biosorbent for cadmium (II) removal in industrial wastewater. J. Life Sci. Technol. (JOLST), 1(1), pp. 65-68. DOI: https://doi.org/10.12720/jolst.1.1.65-68.
 
5. Wang, C., Liu, H., Liu, Z., Gao, Y., Wu, B., Xu, H., 2018. Fe3O4 nanoparticle-coated mushroom source biomaterial for Cr(VI) polluted liquid treatment and mechanism research. R. Soc. Open Sci., 5(5), pp. 1717-1776. DOI: https://doi.org/10.1098/rsos.171776.
 
6. Zhang, D., Zhang, Y., Wang, J., He, H., Li, W., Li, E., Falandysz, J., 2013. Removal of cadmium and lead from heavy metals loaded PVA-SA immobilized Lentinus edodes. Desalin. Water Treat., 52(25-27), pp. 4792-4801. DOI: https://doi.org/10.1080/19443994.2013.809936.
 
7. Ezzouhria, L., Ruizb, E., Castrob, Moya, M., Espinolab, F., Cherrata, L., Er-Raiouic, H., Lairinia, K., 2010. Mechanisms of lead uptake by fungal biomass isolated from heavy metals habitats. Afinidad, 67(545), pp. 39-44.
 
8. Shazia, I., Sumera, A., Ahmad, I., Khanam, T., Azim, A., Nadeem, M., 2015. Use of Duckweed Growing on Sewage Water as Poultry Feed. Int. J. Sci. Res., 5(1), pp. 1-8.
 
9. Dhawale, S.S., Lane, A.C., Dhawale, S.W., 1996. Effects of mercury on the white rot fungus Phanerochaete chrysosporium. Bull. Environ. Contam. Toxicol., 56(5), pp. 825-832. DOI: https://doi.org/10.1007/s001289900120.
 
10. Gabriel, J., Kofronova, O., Rychlovsky, P., Krenzelok, M., 1996. Accumulation and effect of cadmium in the wood-rotting basidiomycete Daedalea quercina. Bull Environ. Contam. Toxicol., 57(3), pp. 383-390. DOI: https://doi.org/10.1007/s001289900202.
 
11. Melgar, M.J., Alonso, J., Perez-Lopez, M., Garcia, M.A., 1998. Influence of some factors in toxicity and accumulation of cadmium from edible wild macrofungi in NW Spain. J. Environ. Sci. Health., Part B, 33(4), pp. 439-455. DOI: https://doi.org/10.1080/03601239809373156.
 
12. Cihangir, N., Saglam, N., 1999. Removal of cadmium by Pleurotus sajor-caju Basidiomycetes. Acta Biotechnol, 19(2), pp. 171-177. DOI: https://doi.org/10.1002/abio.370190212
 
13. Das, N., 2005. Heavy metals biosorption by mushrooms. Nat. Prod. Radiance, 4(6), pp. 454-459.
 
14. Romero, C., Reinoso, E., Urrutia, M., 2006. Biosorption of heavy metals by Talaromyces helicus: a trained fungus for copper and biphenyl detoxification. Electron. J. Biotechnol., 9(3), pp. 221-226. DOI: https://doi.org/10.2225/vol9-issue3-fulltext-11.
 
15. Gupta, V.K., 2009. Application of Low-Cost Adsorbents for Dye Removal - A Review. J. Environ. Manage., 90(8), pp. 2313-2342. DOI: https://doi.org/10.1016/S0301-4797(09)00173-X.
 
16. Patel, S.J., 2016. Review on biosorption of dyes by fungi. Int. J. Innov. Res. Sci. Eng. Technol., 5(1), pp. 1115-1118. DOI: 10.15680/IJIRSET.2015.0501071.
 
17. Nyanikova, G.G., Komissarchik, S.M., Vaseshenkova, M.A., Molchanova, K.V., Sokolova, D.A., Mametnabiev, T.E., 2015. Sorption properties of the fungus Rhizopus oryzae. Bull. St. PbSIT(TU), 29(55), pp. 61-65 (in Russian).
 
18. Chen, C.-Y., Jafvert, C.T.S., 2009. Sorption of Buckminsterfullerene (C60) to saturated soils. Environ. Sci. Technol., 43(19), pp. 7370-7375. DOI: https://doi.org/10.1021/es900989m.
 
19. Kalmykova, T.V., Tarapov, S.I., Nedukh, S.V., Krivoruchko, V.N., Danilenko, I.A., Burchovetckii, V.V., Gurtovoj, D.G., 2012. Peculiarities of electromagnetic waves absorption in polymer magnetic nanocomposites (La,Sr)MnO3. Functional Materials, 19(4), pp. 486-492.
 
20. Bagmut, T.V., 2009. Phenomenological Simulation of the Magnetic Order in a Granular Nanostracture on the Basis of Results of the Electron Spin Resonance Experiment. Telecommunications and Radio Engineering, 68(14), pp. 1271-1282. DOI: https://doi.org/10.1615/TelecomRadEng.v68.i14.
 
21. Vasiliev, A.A., Chashchin, A.N., Lobanova, E.S., Razinsky, M.V., 2014. Non-stoichiometric magnetite in the soils of the urbanized territories of the Perm Territory. Perm Agrarian Bull., 2(6), pp. 43-52 (in Russian).
 
22. Garibova, L.V., 2005. Growing mushrooms. Kiyv: Veche Publ. (in Russian).
 
23. Morozov, A.I., 2001. Growing oyster mushrooms. Moscow: AST Publ.; Donetsk: Stalker Publ. (in Russian).
 
24. Belozorov, D.P., Derkach, V.N., Nedukh, S.V., Ravlik, A.G., Roschenko, S.T., Shipkova, I.G., Tarapov, S.I., Yildiz, F., 2001. High-Frequency Magnetoresonance and Magnetoimpedance in Co/Cu Multilayers with Variable Interlayer Thickness. Int. J. Infrared Millimeter Waves, 22(11), pp. 1669-1682. DOI: https://doi.org/10.1023/A:1015060515794.
 
25. Kittel, Ch., 1962. Ferromagnetic resonance. Publishing House lit. (in Russian).
 
26. Jiann-Shing, Lee, Yuan-Jhe, Song, Hua-Shu, Hsu, Chun-Rong, Lin, Jing-Ya, Huang, Jiunn, Chen, 2019. Magnetic enhancement of carbon-encapsulated magnetite nanoparticles. J. Alloys Compd., 790, pp. 716-722. DOI: https://doi.org/10.1016/j.jallcom.2019.03.191.