• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

Error message

  • Notice: Array to string conversion in theme_biblio_custom_view() (line 376 of /services/www/RE/sites/all/modules/biblio/includes/biblio_theme.inc).
  • Notice: Array to string conversion in theme_biblio_custom_view() (line 376 of /services/www/RE/sites/all/modules/biblio/includes/biblio_theme.inc).
  • Notice: Array to string conversion in theme_biblio_custom_view() (line 376 of /services/www/RE/sites/all/modules/biblio/includes/biblio_theme.inc).
  • Notice: Array to string conversion in theme_biblio_custom_view() (line 376 of /services/www/RE/sites/all/modules/biblio/includes/biblio_theme.inc).
  • Notice: Array to string conversion in theme_biblio_custom_view() (line 376 of /services/www/RE/sites/all/modules/biblio/includes/biblio_theme.inc).
  • Notice: Array to string conversion in theme_biblio_custom_view() (line 376 of /services/www/RE/sites/all/modules/biblio/includes/biblio_theme.inc).
  • Notice: Array to string conversion in theme_biblio_custom_view() (line 376 of /services/www/RE/sites/all/modules/biblio/includes/biblio_theme.inc).
  • Notice: Array to string conversion in theme_biblio_custom_view() (line 376 of /services/www/RE/sites/all/modules/biblio/includes/biblio_theme.inc).
  • Notice: Array to string conversion in theme_biblio_custom_view() (line 376 of /services/www/RE/sites/all/modules/biblio/includes/biblio_theme.inc).
  • Notice: Array to string conversion in theme_biblio_custom_view() (line 376 of /services/www/RE/sites/all/modules/biblio/includes/biblio_theme.inc).
  • Notice: Array to string conversion in theme_biblio_custom_view() (line 376 of /services/www/RE/sites/all/modules/biblio/includes/biblio_theme.inc).
  • Notice: Array to string conversion in theme_biblio_custom_view() (line 376 of /services/www/RE/sites/all/modules/biblio/includes/biblio_theme.inc).
  • Notice: Array to string conversion in theme_biblio_custom_view() (line 376 of /services/www/RE/sites/all/modules/biblio/includes/biblio_theme.inc).
  • Notice: Array to string conversion in theme_biblio_custom_view() (line 376 of /services/www/RE/sites/all/modules/biblio/includes/biblio_theme.inc).
  • Notice: Array to string conversion in theme_biblio_custom_view() (line 376 of /services/www/RE/sites/all/modules/biblio/includes/biblio_theme.inc).
  • Notice: Array to string conversion in theme_biblio_custom_view() (line 376 of /services/www/RE/sites/all/modules/biblio/includes/biblio_theme.inc).
  • Deprecated function: implode(): Passing glue string after array is deprecated. Swap the parameters in drupal_get_feeds() (line 394 of /services/www/RE/includes/common.inc).
  • Deprecated function: The each() function is deprecated. This message will be suppressed on further calls in menu_set_active_trail() (line 2405 of /services/www/RE/includes/menu.inc).

A low temperature study of electromagnetic energy loss in low-loss materials in the 110…140 GHz frequency range

Manuscript submitted 27.12.2019
Radiofiz. elektron. 2020, 25(3): 42-53
Full text  (PDF)

References: 

 

1. Gurevich, V.L., Tagantsev, A.K., 1991. Intrinsic dielectric loss in crystals. Adv. Phys., 40(6), pp. 719-767. DOI: https://doi.org/10.1080/00018739100101552
 
2. Meriakri, V.V., Chigryai, E.E., Nikitin, I.P., 2013,Dielectric properties of some practical-use materials in the low-frequency part of the terahertz band. In: Proc. 2013 Int. Conf. Advanced Optoelectronics and Lasers (CAOL). Sudak, Ukraine, 9-13 Sept. 2013, pp. 173-175. DOI: https://doi.org/10.1109/CAOL.2013.6657569
 
3. Garin, B.M., Parshin, V.V., Myasnikova, S.E., Ralchenko, V.G., 2003. Nature of millimeter wave losses in low loss CVD diamonds. Diamond Relat. Mater., 12(10-11), pp. 1755-1759. DOI: https://doi.org/10.1016/S0925-9635(03)00199-7
 
4. Raju, G.G., 2017. Dielectrics in Electric Fields. 2nd ed. NY, USA: Crc Press-Taylor & Francis Group. DOI: https://doi.org/10.1201/9781315373270
 
5. Raveendran, A., Sebastian, M.T., Raman, S., 2019. Applications of microwave materials: a review. J. Electron. Mater., 48(5), pp. 2601-2634. DOI: https://doi.org/10.1007/s11664-019-07049-1
 
6. Thumm, M., 2017. State-of-the-art of high power gyro-devices and free electron masers. Kit Scientific Reports 7750. [online]. Karlsruhe Institute of Technology KIT Scientific Publ. Available from: https://www.ksp.kit.edu/1000081551
 
7. Sussmann, R.S. ed., 2009. CVD Diamond for Electronic Devices and Sensors. John Wiley & Sons, Ltd., Publ. DOI: https://doi.org/10.1002/9780470740392
 
8. Aiello, G., Casal, N., Gagliardi, M., Goodman, T., Henderson, M., Meier, A., Saibene, G., Scherer, T., Schreck, S., Strauss, D., 2019. Design evolution of the diamond window unit for the ITER EC H&CD upper launcher. Fusion Eng. Des., 146, Pt. A, pp. 392-397. DOI: 10.1016/j.fusengdes.2018.12.075. DOI: https://doi.org/10.1016/j.fusengdes.2018.12.075
 
9. Krupka, J., Derzakowski, K., Tobar, M., Hartnett, J., Geyer, R.G, 1999. Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures. Meas. Sci. Technol., 10(5), pp. 387-392. DOI: https://doi.org/10.1088/0957-0233/10/5/308
 
10. Le Floch, J.M., Fan,Y., Humbert,G., Shan, Q.X., Ferachou, D., Bara-Maillet, R., Aubourg, M., Hartnett, J.G., Madrangeas, V., Cros, D., Blondy, J.M., Krupka, J., Tobar, M.E., 2014. Invited Article: Dielectric material characterization techniques and designs of high-Q resonators for applications from micro to millimeter-waves frequencies applicable at room and cryogenic temperatures. Rev. Sci. Instrum., 85(3), pp. 031301 (13 p.). DOI: https://doi.org/10.1063/1.4867461
 
11. Barannik, A., Cherpak, N., Kirichenko, A., Prokopenko, Y., Vitusevich, S., Yakovenko, V., 2017. Whispering gallery mode resonators in microwave physics and technologies, Int. J. Microwave Wireless Technol., 9(4), pp. 781-796. DOI: https://doi.org/10.1017/S1759078716000787
 
12. Golovashchenko, R.V., Derkach, V.N., Prokopenko, Yu.V., Smirnova, T.A., Tarapov, S.I., Filippov, Yu.F., 2006. On oscillations in disk dielectric resonators. In: V.M. Yakovenko, ed. 2006. Radiofizika I elektronika. Kharkov: IRE NAS of Ukraine Publ. 11(3), pp. 360-365 (in Russian).
 
13. Kirichenko, A.Ya., Kogut, A.Ye., Kutuzov, V.V., Maksimchuk, I.G., Nosatyuk, S.O., 2010. Cavity method for determination of dielectric characteristics of fine granular materials in 8-mm range of wavelengths. In: 2010 20th Int. Crimean Conf. "Microwave & Telecommunication Technology" (CriMiCo'2010): proc. Sevastopol, Ukraine, 13-17 Sept. 2010. Sevastopol: IEEE. DOI: https://doi.org/10.1109/CRMICO.2010.5632775
 
14. Golovashchenko, R.V., Derkach, V.N., Tarapov, S.I., 2015. Microwave loss in low-absorption diamond-like materials at 1 k < t < 300 k. The phenomenological simulation. Radiofiz. Elektron., 20(4), pp. 31-38 (in Russian). DOI: https://doi.org/10.15407/rej2015.04.031
 
15. Parshin, V.V., Serov, E.A., Bubnov, G.M., Vdovin, V.F., Koshelev, M.A., Tretyakov, M.Y., 2014. Cryogenic resonator complex. Radiophys. Quantum Electron., 56(8-9), pp. 554-560. DOI: https://doi.org/10.1007/s11141-014-9458-0
 
16. Garin, B.M., 2005. Lower loss limits at millimeter and terahertz ranges. In: Infrared and Millimeter Waves, Conf. Digest of the 2004 Joint 29th Int. Conf on 2004 and 12th Int. Conf. on Terahertz Electronics, 2004. Williamsburg, USA, 27 Sept.-1 Oct. 2004. Williamsburg, IEEE, pp. 393-394. DOI: https://doi.org/10.1109/ICIMW.2004.1422127
 
17. Garin, B.M., Parshin, V.V., Serov, E.A., Jia, C.C., Tang, W.Z., Lu, F.X., 2011. Electromagnetic properties at millimeter wavelength range of diamond films grown by DC arc plasma jet technique. [pdf]. In: Proc. PIERS 2011 Suzhou: Progress in Electromagnetics Research Symp. 2011, pp. 455-457. Available from: http://piers.org/pierspublications/PIERS2011SuzhouProceedings02.pdf
 
18. Garin, B.M., Polyakov, V.I., Rukovishnikov, A.I., Khomich, A.V., Parshin, V.V., Serov E.A., Jia, C.C., Lu, F.X., Tang, W.Z., 2014. Dielectric loss at millimeter range and temperatures 300-950 K, and electrophysical properties in diamonds grown by the Arc Plasma Jet Technology. [pdf]. In: Proc. PIERS 2014 Guangzhou. China, 25-28 August 2014, pp. 2096-2099. Available from: http://piers.org/pierspublications/PIERS2014GuangzhouProceedings03.pdf
 
19. Andreev, B.A., Kotereva, T.V., Parshin, V.V., Shmaginn, V.B., 1997. Silicon with extremely low millimeter-wave dielectric loss. Inorg. Mater., 33(11), pp. 1100-1102.
 
20. Sebastian, M.T., Krupka, J., Arun, S., Kim, C.H., Kim, H.T., 2018. Polypropylene-high resistivity silicon composite for high frequency applications. Mater. Lett., 232, pp. 92-94. DOI: https://doi.org/10.1016/j.matlet.2018.08.093
 
21. Krupka, J., Mouneyrac, D., Hartnett, J.G., Tobar, M.E., 2008. Use of whispering-gallery modes and quasi-TE0np modes for broadband characterization of bulk gallium arsenide and gallium phosphide samples. IEEE Trans. Microwave Theory Tech., 56(5), pp. 1201-1206. DOI: https://doi.org/10.1109/TMTT.2008.921652
 
22. Shklovsky, B.I., Efros, A.L., 1979. Electronic properties of doped semiconductors. Moscow: Nauka Publ. (in Russian).
 
23. Sebastian, M.T., Ubic, R., Jantunen, H., 2015. Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev., 60(7), pp. 392-412. DOI: https://doi.org/10.1179/1743280415Y.0000000007
 
24. Satoh, D., Shibuya T., Ogawa, H., Tanaka, M., Kuroda, R., Moric, S., Yoshidac, M., Toyokawa, H., 2019. Power efficiency enhancement of dielectric assist accelerating structure. Nucl. Instrum. Methods Phys. Res., Sect. B, 459, pp. 148-152. DOI: https://doi.org/10.1016/j.nimb.2019.09.006
 
25. Breeze, J., 2016. Temperature and Frequency Dependence of Complex Permittivity in Metal Oxide Dielectrics: Theory, Modelling and Measurement. Springer. DOI: https://doi.org/10.1007/978-3-319-44547-2
 
26. Derkach, V.N., Golovashchenko, R.V., Nedukh, S.V., Plevako, A.S., Tarapov, S.I., Measurement of loss tangent of dielectric and semiconductor materials at millimeter waves and temperatures 0.9-300 K. In: Digest Joint 30th Int. Conf. Infrared and Millimeter Waves & 13th Int. Conf. Terahertz Electronics (IRMMW-THz 2005). Williamsburg, USA, 19-23 Sept. 2005, pp. 192-193. DOI: https://doi.org/10.1109/ICIMW.2005.1572473
 
27. Barannik, A.A., Prokopenko, Y.V., Filipov, Y.F., Cherpak, N.T., Korotash, I.V., 2003. Q-factor of a millimeter-wave sapphire disk resonator with conductive end plates. Tech. Phys., 48(5), pp. 621-625. DOI: https://doi.org/10.1134/1.1576479
 
28. Krupka, J., 2003. Precise measurements of the complex permittivity of dielectric materials at microwave frequencies. Mater. Chem. Phys., 79(2-3), pp. 195-198. DOI: https://doi.org/10.1016/S0254-0584(02)00257-2
 
29. Krupka, J., Hartnett, J.G., Piersa, M., 2011. Permittivity and microwave absorption of semi-insulating InP at microwave frequencies. Appl. Phys. Lett., 98(11), pp. 112112-1-3. DOI: https://doi.org/10.1063/1.3570689
 
30. Dobromyslov, V.S., Kuznetsov, A.P., 1987. Calculation of sapphire resonators with azimuthal oscillations. Electronic Engineering. Ser. Microwave Electronics, 6 (400), pp. 21-23. (in Russian).
 
31. Golovashchenko, R.V., 2010. Excitation system of a disk dielectric resonator in the cryodielectrometer. Radiofiz. Elektron., 15(2), pp. 27-31 (in Russian).
 
32. Derkach, V.N., Golovashchenko, R.V., Goroshko, O.V., Varavin, A.V., Plevako, A.S., 2006. Hardware and software complex for MM-wave spectroscopic research, In: Proc. 2006 16th Int. Crimean Conf. "Microwave & Telecommunication Technology" (CriMiCo'2006). Sevastopol, Ukraine, 11-15 Sept. 2006, pp. 817-818. Sevastopol, IEEE. DOI: https://doi.org/10.1109/CRMICO.2006.256215
 
33. Derkach, V.N., Golovashchenko, R.V., Ostryzhnyi, Y.M., Plevako, A.S., Tarapov, S.I., Alekseev, E.A., 2016, Dielectric losses of high-resistivity semiconductor materials in EHF-band at cryogenic temperatures. In: Proc. 2016 9th Int. Kharkiv Symp. "Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves" (MSMW'2016). Kharkiv, Ukraine, 20-24 June 2016. Kharkiv: IEEE. DOI: https://doi.org/10.1109/MSMW.2016.7538082
 
34. Golovashchenko, R.V., Plevako, A.S., Ostryzhnyi, Y.M., Derkach, V.N., Meshcheryakov, A.A., Alekseev, E.A. 2016. High-resolution computer-controlled oscillator of 2-mm wave-range for the low temperature dielectrometer. In: Ibid. DOI: https://doi.org/10.1109/MSMW.2016.7538102
 
35. Experimental complex - national treasure of Ukraine, 2005. Available from: http://www.ire.kharkov.ua/en/national-treasure.html
 
36. Golovashchenko, R.V., Derkach, V.N., Zaetz, M.K., Korzh, V.G., Plevako, A.S., Tarapov, S.I., 2013. Control and stabilization of temperature (0.8÷300 K) in the cryodielectrometer of the gigahertz frequency band. Radiofiz. Elektron., 18(4), pp. 92-98 (in Russian). DOI: https://doi.org/10.1615/TelecomRadEng.v73.i11.50
 
37. Golovashchenko, R.V., Zaetz, N.K., Ostryzhnyi, Y.M., Plevako, A.S., Derkach, V.N., 2016. Precision temperature measurement unit for the low temperature dielectrometer. In: Proc. 2016 9th Int. Kharkiv Symp. "Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves" (MSMW'2016). Kharkiv, Ukraine, 20-24 June 2016. Kharkiv: IEEE. DOI: https://doi.org/10.1109/MSMW.2016.7538104
 
38. Alekseev, E.A., Motienko, R.A, Margules, L., 2011. Millimeter and submillimeter spectrometers based on direct digital synthesis synthesizers. Radio Physics and Radio Astronomy, 16(3), pp. 313-327 (in Russian). Available from: http://rpra-journal.org.ua/index.php/ra/article/view/437
 
39. Petkie, D.T., Goyette, T.M., Bettens, R.P.A., Belov S.P., Albert S., Helminger P., De Lucia, F.C., 1997. A fast scan submillimeter spectroscopic technique. Rev. Sci. Instrum., 68(4), pp. 1675-1683. DOI: https://doi.org/10.1063/1.1147970
 
40. Lewen, F., Gendriesch, R., Pak, I., Paveliev, D.G., Hepp, M., Schieder, R., Winnewisser, G., 1998. Phase locked backward wave oscillator pulsed beam spectrometer in the submillimeter wave range. Rev. Sci. Instrum., 69(1), pp. 32-39. DOI: https://doi.org/10.1063/1.1148475
 
41. Microconverter 12-bit ADCs and DACs with embedded high speed 62 kB flash MCU, ADuC841/ADuC842/ADuC843, Data Sheet. [pdf]. Available from: http://www.analog.com/media/en/technical-documentation/data-sheets/ADUC8...
 
42. Molla, J., Vila, R., Heidinger, R., Ibarra, A., 1998. Radiation effects on dielectric losses of Au-doped silicon. J. Nucl. Mater., 258-263, Pt. 2, pp. 1884-1888. DOI: https://doi.org/10.1016/S0022-3115(98)00131-7
 
43. Le Floch, J.-M., Bara, R., Hartnett, J.G., Tobar, M.E., Mouneyrac, D., Passerieux, D., Cros, D., Krupka, J., Goy, P., Caroopen, S., 2011. Electromagnetic properties of polycrystalline diamond from 35 K to room temperature and microwave to terahertz frequencies. J. Appl. Phys., 109(9), pp. 094103 (6 p.). DOI: https://doi.org/10.1063/1.3580903