• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

A low temperature study of electromagnetic energy loss in low-loss materials in the 110…140 GHz frequency range

Derkach, VN, Alekseev, EA, Golovashchenko, RV, Ostryzhnyi, YM, Meshcheryakov, AA, Tarapov, SI


O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine

E-mail: derkach@ire.kharkov.ua

Institute of Radio Astronomy of the National Academy of Sciences of Ukraine
4, Mystetstv St., Kharkiv, 61002, Ukraine

E-mail: ealekseev@rian.kharkov.ua

V.N.Karazin Kharkiv National University
4, Svobody Sq., Kharkiv, 61022, Ukraine

Kharkiv National University of Radio Electronics
14, Nauky Av., Kharkiv, 61166, Ukraine

Language: ukranian


Subject and Purpose. The subject of the study is spectral and energy characteristics of whispering-gallery disk resonators made up of low-loss microwave dielectric and semiconductor materials, namely, gold-doped silicon Si:Au, Chemical Vapor Deposition (CVD) diamond, Arc Plasma Jet (APJ) diamond, and alumina ceramics Al2O3. On the basis of the temperature dependences of the microwave energy loss in the materials mentioned, we seek to classify the loss contributions among the electromagnetic energy absorption mechanisms and find physical parameters responsible for these mechanisms.  

Methods and Methodology. The loss values were experimentally obtained by the whispering-gallery disk resonator technique with the usage of a cryodielectrometer. A phenomenological simulation was performed to classify the loss contributions to the temperature dependence of electromagnetic energy absorption among the major loss mechanisms in the examined materials.

Results. The experimental study results on the dielectric loss temperature dependence within 4.2...300 K have been presented and discussed for low-loss semiconductor and dielectric materials, including gold-doped silicon Si:Au, CVD-diamond, APJ-diamond, and alumina ceramics Al2O3 with reference to the frequency band 110...140 GHz. Certain design features have been suggested to use in the authors’ software-controlled measuring unit to provide the interchangeability of backward wave tubes (BWT) inside the cryodielectrometer and extend the merasuring bandwidth up to 34...144 GHz. The unit offers software-controlled frequency tuning with a spectral resolution of about 0.1 MHz. The loss contributions have been classified among the major loss mechanisms, and physical constitutive parameters responsible for these mechanisms have been determined.

Conclusion. The temperature dependences of dielectric loss in low-absorption materials have been registered and analysed. The developed measuring unit has advantageous design features and provides, in addition, an independent controllable radiation source which can be included in a frequency synthesis system with phase-locked loop.


Keywords: cryogenic temperatures, disk dielectric resonator, high-resistance semiconductor, low-loss dielectric, low-temperature dielectrometry, millimeter waves, whispering gallery modes

Manuscript submitted 27.12.2019
Radiofiz. elektron. 2020, 25(3): 42-53
Full text  (PDF)



1. Gurevich, V.L., Tagantsev, A.K., 1991. Intrinsic dielectric loss in crystals. Adv. Phys., 40(6), pp. 719-767. DOI: https://doi.org/10.1080/00018739100101552
2. Meriakri, V.V., Chigryai, E.E., Nikitin, I.P., 2013,Dielectric properties of some practical-use materials in the low-frequency part of the terahertz band. In: Proc. 2013 Int. Conf. Advanced Optoelectronics and Lasers (CAOL). Sudak, Ukraine, 9-13 Sept. 2013, pp. 173-175. DOI: https://doi.org/10.1109/CAOL.2013.6657569
3. Garin, B.M., Parshin, V.V., Myasnikova, S.E., Ralchenko, V.G., 2003. Nature of millimeter wave losses in low loss CVD diamonds. Diamond Relat. Mater., 12(10-11), pp. 1755-1759. DOI: https://doi.org/10.1016/S0925-9635(03)00199-7
4. Raju, G.G., 2017. Dielectrics in Electric Fields. 2nd ed. NY, USA: Crc Press-Taylor & Francis Group. DOI: https://doi.org/10.1201/9781315373270
5. Raveendran, A., Sebastian, M.T., Raman, S., 2019. Applications of microwave materials: a review. J. Electron. Mater., 48(5), pp. 2601-2634. DOI: https://doi.org/10.1007/s11664-019-07049-1
6. Thumm, M., 2017. State-of-the-art of high power gyro-devices and free electron masers. Kit Scientific Reports 7750. [online]. Karlsruhe Institute of Technology KIT Scientific Publ. Available from: https://www.ksp.kit.edu/1000081551
7. Sussmann, R.S. ed., 2009. CVD Diamond for Electronic Devices and Sensors. John Wiley & Sons, Ltd., Publ. DOI: https://doi.org/10.1002/9780470740392
8. Aiello, G., Casal, N., Gagliardi, M., Goodman, T., Henderson, M., Meier, A., Saibene, G., Scherer, T., Schreck, S., Strauss, D., 2019. Design evolution of the diamond window unit for the ITER EC H&CD upper launcher. Fusion Eng. Des., 146, Pt. A, pp. 392-397. DOI: 10.1016/j.fusengdes.2018.12.075. DOI: https://doi.org/10.1016/j.fusengdes.2018.12.075
9. Krupka, J., Derzakowski, K., Tobar, M., Hartnett, J., Geyer, R.G, 1999. Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures. Meas. Sci. Technol., 10(5), pp. 387-392. DOI: https://doi.org/10.1088/0957-0233/10/5/308
10. Le Floch, J.M., Fan,Y., Humbert,G., Shan, Q.X., Ferachou, D., Bara-Maillet, R., Aubourg, M., Hartnett, J.G., Madrangeas, V., Cros, D., Blondy, J.M., Krupka, J., Tobar, M.E., 2014. Invited Article: Dielectric material characterization techniques and designs of high-Q resonators for applications from micro to millimeter-waves frequencies applicable at room and cryogenic temperatures. Rev. Sci. Instrum., 85(3), pp. 031301 (13 p.). DOI: https://doi.org/10.1063/1.4867461
11. Barannik, A., Cherpak, N., Kirichenko, A., Prokopenko, Y., Vitusevich, S., Yakovenko, V., 2017. Whispering gallery mode resonators in microwave physics and technologies, Int. J. Microwave Wireless Technol., 9(4), pp. 781-796. DOI: https://doi.org/10.1017/S1759078716000787
12. Golovashchenko, R.V., Derkach, V.N., Prokopenko, Yu.V., Smirnova, T.A., Tarapov, S.I., Filippov, Yu.F., 2006. On oscillations in disk dielectric resonators. In: V.M. Yakovenko, ed. 2006. Radiofizika I elektronika. Kharkov: IRE NAS of Ukraine Publ. 11(3), pp. 360-365 (in Russian).
13. Kirichenko, A.Ya., Kogut, A.Ye., Kutuzov, V.V., Maksimchuk, I.G., Nosatyuk, S.O., 2010. Cavity method for determination of dielectric characteristics of fine granular materials in 8-mm range of wavelengths. In: 2010 20th Int. Crimean Conf. "Microwave & Telecommunication Technology" (CriMiCo'2010): proc. Sevastopol, Ukraine, 13-17 Sept. 2010. Sevastopol: IEEE. DOI: https://doi.org/10.1109/CRMICO.2010.5632775
14. Golovashchenko, R.V., Derkach, V.N., Tarapov, S.I., 2015. Microwave loss in low-absorption diamond-like materials at 1 k < t < 300 k. The phenomenological simulation. Radiofiz. Elektron., 20(4), pp. 31-38 (in Russian). DOI: https://doi.org/10.15407/rej2015.04.031
15. Parshin, V.V., Serov, E.A., Bubnov, G.M., Vdovin, V.F., Koshelev, M.A., Tretyakov, M.Y., 2014. Cryogenic resonator complex. Radiophys. Quantum Electron., 56(8-9), pp. 554-560. DOI: https://doi.org/10.1007/s11141-014-9458-0
16. Garin, B.M., 2005. Lower loss limits at millimeter and terahertz ranges. In: Infrared and Millimeter Waves, Conf. Digest of the 2004 Joint 29th Int. Conf on 2004 and 12th Int. Conf. on Terahertz Electronics, 2004. Williamsburg, USA, 27 Sept.-1 Oct. 2004. Williamsburg, IEEE, pp. 393-394. DOI: https://doi.org/10.1109/ICIMW.2004.1422127
17. Garin, B.M., Parshin, V.V., Serov, E.A., Jia, C.C., Tang, W.Z., Lu, F.X., 2011. Electromagnetic properties at millimeter wavelength range of diamond films grown by DC arc plasma jet technique. [pdf]. In: Proc. PIERS 2011 Suzhou: Progress in Electromagnetics Research Symp. 2011, pp. 455-457. Available from: http://piers.org/pierspublications/PIERS2011SuzhouProceedings02.pdf
18. Garin, B.M., Polyakov, V.I., Rukovishnikov, A.I., Khomich, A.V., Parshin, V.V., Serov E.A., Jia, C.C., Lu, F.X., Tang, W.Z., 2014. Dielectric loss at millimeter range and temperatures 300-950 K, and electrophysical properties in diamonds grown by the Arc Plasma Jet Technology. [pdf]. In: Proc. PIERS 2014 Guangzhou. China, 25-28 August 2014, pp. 2096-2099. Available from: http://piers.org/pierspublications/PIERS2014GuangzhouProceedings03.pdf
19. Andreev, B.A., Kotereva, T.V., Parshin, V.V., Shmaginn, V.B., 1997. Silicon with extremely low millimeter-wave dielectric loss. Inorg. Mater., 33(11), pp. 1100-1102.
20. Sebastian, M.T., Krupka, J., Arun, S., Kim, C.H., Kim, H.T., 2018. Polypropylene-high resistivity silicon composite for high frequency applications. Mater. Lett., 232, pp. 92-94. DOI: https://doi.org/10.1016/j.matlet.2018.08.093
21. Krupka, J., Mouneyrac, D., Hartnett, J.G., Tobar, M.E., 2008. Use of whispering-gallery modes and quasi-TE0np modes for broadband characterization of bulk gallium arsenide and gallium phosphide samples. IEEE Trans. Microwave Theory Tech., 56(5), pp. 1201-1206. DOI: https://doi.org/10.1109/TMTT.2008.921652
22. Shklovsky, B.I., Efros, A.L., 1979. Electronic properties of doped semiconductors. Moscow: Nauka Publ. (in Russian).
23. Sebastian, M.T., Ubic, R., Jantunen, H., 2015. Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev., 60(7), pp. 392-412. DOI: https://doi.org/10.1179/1743280415Y.0000000007
24. Satoh, D., Shibuya T., Ogawa, H., Tanaka, M., Kuroda, R., Moric, S., Yoshidac, M., Toyokawa, H., 2019. Power efficiency enhancement of dielectric assist accelerating structure. Nucl. Instrum. Methods Phys. Res., Sect. B, 459, pp. 148-152. DOI: https://doi.org/10.1016/j.nimb.2019.09.006
25. Breeze, J., 2016. Temperature and Frequency Dependence of Complex Permittivity in Metal Oxide Dielectrics: Theory, Modelling and Measurement. Springer. DOI: https://doi.org/10.1007/978-3-319-44547-2
26. Derkach, V.N., Golovashchenko, R.V., Nedukh, S.V., Plevako, A.S., Tarapov, S.I., Measurement of loss tangent of dielectric and semiconductor materials at millimeter waves and temperatures 0.9-300 K. In: Digest Joint 30th Int. Conf. Infrared and Millimeter Waves & 13th Int. Conf. Terahertz Electronics (IRMMW-THz 2005). Williamsburg, USA, 19-23 Sept. 2005, pp. 192-193. DOI: https://doi.org/10.1109/ICIMW.2005.1572473
27. Barannik, A.A., Prokopenko, Y.V., Filipov, Y.F., Cherpak, N.T., Korotash, I.V., 2003. Q-factor of a millimeter-wave sapphire disk resonator with conductive end plates. Tech. Phys., 48(5), pp. 621-625. DOI: https://doi.org/10.1134/1.1576479
28. Krupka, J., 2003. Precise measurements of the complex permittivity of dielectric materials at microwave frequencies. Mater. Chem. Phys., 79(2-3), pp. 195-198. DOI: https://doi.org/10.1016/S0254-0584(02)00257-2
29. Krupka, J., Hartnett, J.G., Piersa, M., 2011. Permittivity and microwave absorption of semi-insulating InP at microwave frequencies. Appl. Phys. Lett., 98(11), pp. 112112-1-3. DOI: https://doi.org/10.1063/1.3570689
30. Dobromyslov, V.S., Kuznetsov, A.P., 1987. Calculation of sapphire resonators with azimuthal oscillations. Electronic Engineering. Ser. Microwave Electronics, 6 (400), pp. 21-23. (in Russian).
31. Golovashchenko, R.V., 2010. Excitation system of a disk dielectric resonator in the cryodielectrometer. Radiofiz. Elektron., 15(2), pp. 27-31 (in Russian).
32. Derkach, V.N., Golovashchenko, R.V., Goroshko, O.V., Varavin, A.V., Plevako, A.S., 2006. Hardware and software complex for MM-wave spectroscopic research, In: Proc. 2006 16th Int. Crimean Conf. "Microwave & Telecommunication Technology" (CriMiCo'2006). Sevastopol, Ukraine, 11-15 Sept. 2006, pp. 817-818. Sevastopol, IEEE. DOI: https://doi.org/10.1109/CRMICO.2006.256215
33. Derkach, V.N., Golovashchenko, R.V., Ostryzhnyi, Y.M., Plevako, A.S., Tarapov, S.I., Alekseev, E.A., 2016, Dielectric losses of high-resistivity semiconductor materials in EHF-band at cryogenic temperatures. In: Proc. 2016 9th Int. Kharkiv Symp. "Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves" (MSMW'2016). Kharkiv, Ukraine, 20-24 June 2016. Kharkiv: IEEE. DOI: https://doi.org/10.1109/MSMW.2016.7538082
34. Golovashchenko, R.V., Plevako, A.S., Ostryzhnyi, Y.M., Derkach, V.N., Meshcheryakov, A.A., Alekseev, E.A. 2016. High-resolution computer-controlled oscillator of 2-mm wave-range for the low temperature dielectrometer. In: Ibid. DOI: https://doi.org/10.1109/MSMW.2016.7538102
35. Experimental complex - national treasure of Ukraine, 2005. Available from: http://www.ire.kharkov.ua/en/national-treasure.html
36. Golovashchenko, R.V., Derkach, V.N., Zaetz, M.K., Korzh, V.G., Plevako, A.S., Tarapov, S.I., 2013. Control and stabilization of temperature (0.8÷300 K) in the cryodielectrometer of the gigahertz frequency band. Radiofiz. Elektron., 18(4), pp. 92-98 (in Russian). DOI: https://doi.org/10.1615/TelecomRadEng.v73.i11.50
37. Golovashchenko, R.V., Zaetz, N.K., Ostryzhnyi, Y.M., Plevako, A.S., Derkach, V.N., 2016. Precision temperature measurement unit for the low temperature dielectrometer. In: Proc. 2016 9th Int. Kharkiv Symp. "Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves" (MSMW'2016). Kharkiv, Ukraine, 20-24 June 2016. Kharkiv: IEEE. DOI: https://doi.org/10.1109/MSMW.2016.7538104
38. Alekseev, E.A., Motienko, R.A, Margules, L., 2011. Millimeter and submillimeter spectrometers based on direct digital synthesis synthesizers. Radio Physics and Radio Astronomy, 16(3), pp. 313-327 (in Russian). Available from: http://rpra-journal.org.ua/index.php/ra/article/view/437
39. Petkie, D.T., Goyette, T.M., Bettens, R.P.A., Belov S.P., Albert S., Helminger P., De Lucia, F.C., 1997. A fast scan submillimeter spectroscopic technique. Rev. Sci. Instrum., 68(4), pp. 1675-1683. DOI: https://doi.org/10.1063/1.1147970
40. Lewen, F., Gendriesch, R., Pak, I., Paveliev, D.G., Hepp, M., Schieder, R., Winnewisser, G., 1998. Phase locked backward wave oscillator pulsed beam spectrometer in the submillimeter wave range. Rev. Sci. Instrum., 69(1), pp. 32-39. DOI: https://doi.org/10.1063/1.1148475
41. Microconverter 12-bit ADCs and DACs with embedded high speed 62 kB flash MCU, ADuC841/ADuC842/ADuC843, Data Sheet. [pdf]. Available from: http://www.analog.com/media/en/technical-documentation/data-sheets/ADUC8...
42. Molla, J., Vila, R., Heidinger, R., Ibarra, A., 1998. Radiation effects on dielectric losses of Au-doped silicon. J. Nucl. Mater., 258-263, Pt. 2, pp. 1884-1888. DOI: https://doi.org/10.1016/S0022-3115(98)00131-7
43. Le Floch, J.-M., Bara, R., Hartnett, J.G., Tobar, M.E., Mouneyrac, D., Passerieux, D., Cros, D., Krupka, J., Goy, P., Caroopen, S., 2011. Electromagnetic properties of polycrystalline diamond from 35 K to room temperature and microwave to terahertz frequencies. J. Appl. Phys., 109(9), pp. 094103 (6 p.). DOI: https://doi.org/10.1063/1.3580903