• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

Ferromagnetic resonance in Fe1–xCoxFe2O4 nanoparticles precipitated from diethylene glycol

Vakula, AS, Kravchuk, ОА, Tarapov, SI, Belous, AG
Organization: 

 

O.Ya. Usikov Institute of Radiophysics and Electronics
12, Acad. Proskury St., Kharkiv, 61085, Ukraine

E-mail: vakula@ire.kharkov.ua

Kharkiv National University of Radio Electronics
14, Nauky Ave., Kharkiv, 61166, Ukraine

V.N. Karazin Kharkiv National University
4, Svobody Sq., Kharkiv, 61022, Ukraine

Institute of General and Inorganic Chemistry
32/34, Akad. Palladina Ave, Kiev, 03142, Ukraine

https://doi.org/10.15407/rej2020.03.054
Language: english
Abstract: 

 

Subject and Purpose. One of the ways to gain in the efficiency of the hyperthermia technique is through the synthesis of new magnetic nanomaterials offering high coercive force without affecting biocompatibility. A proven technology is the doping of biocompatible materials, such as Fe3O4, with atoms of highly coercive substances, such as Co atoms. Despite it has been the theme of much investigation, magnetic state of such nanoparticles is still not completely understood. The present study is devoted to the magnetic and magnetic resonance properties of Fe1–xCoxFe2O4 nanoparticles synthesized by the precipitation from diethylene glycol at two, T = 200 °C and 500 °C, temperatures. The purpose is to study magnetic and magnetic resonance properties of Fe1-xCoxFe2O4 nanoparticles at various concentrations x.

Method and Methodology. The magnetometric method and the electron spin resonance method were employed to obtain, correspondingly, magnetic hysteresis loops of magnetic nanoparticles and ferromagnetic resonance (FMR) spectra in the frequency band f = 8…20 GHz at the temperature T = 294 K. Transmission electron microscopy was used for nanoparticle observations.

Results. The analysis of the measuring results has shown that among Fe1–xCoxFe2O4 nanoparticle samples with concentrations x = 0.0, 0.5, and 1.0, the total magnetic anisotropy field at x = 0.5 is the largest of the three because its crystalline anisotropy field is the largest compared to x = 0.0 and 1.0.

Conclusion. The presented results have advanced our understanding of the fundamental interaction between magnetic Co and Fe atoms inside the crystal lattice of AFe2O4, where A is Co or Fe. The gained knowledge can contribute to the development of magnetically controlled high-frequency filters and frequency selectors.

Keywords: electron spin resonance, ferromagnetic resonance, magnetite, microwaves

Manuscript submitted 15.04.2020
Radiofiz. elektron. 2020, 25(3): 54-59
Full text  (PDF)

References: 

 

 

1. Mozul, K.A., Olkhovik, L.P., Sizova, Z.I., 2013. Surface magnetic anisotropy of CoFe2O4 nanoparticles with giant low-temperature hysteresis. Low Temperature Phys., 39(4), pp. 469-474 (in Russian). DOI: https://doi.org/10.1063/1.4801993 .
 
2. Hafeli, U., Schott, W., Teller, J., 1997. Scientific and clinical applications of magnetic carriers. New York: Springer. 610 p. DOI: https://doi.org/10.1007/978-1-4757-6482-6.
 
3. Torres, T.E., Roca, A.G., Morales, M.P., Ibarra, A., Marquina, C., Ibarra, M.R. and Goya, G.F., 2010. Magnetic properties and energy absorption of CoFe2O4 nanoparticles for magnetic hyperthermia. J. Phys.: Conf. Ser., 200, pp. 072101 (4 p.). DOI: https://doi.org/10.1088/1742-6596/200/7/072101.
 
4. Tartaj, P., Morales, M.P., Veintemillas-Verdaguer, S., Gonzalez-Carreño, T., Serna, C.J., 2006. Synthesis, properties and biomedical applications of magnetic nanoparticles. In: Handbook of magnetic materials, 16, pp. 403-482. Ch. 5. DOI: https://doi.org/10.1016/S1567-2719(05)16005-3.
 
5. Gandha, K., Elkins, K., Poudyal, N., Liu, J.P., 2015. Synthesis and characterization of CoFe2O4 nanoparticles with high coercivity. J. Appl. Phys., 117(17), 17A736. DOI: https://doi.org/10.1063/1.4916544.
 
6. Bañobre-López, M., Teijeiro, A., Rivas, J., 2013. Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep. Pract. Oncol. Radiother., 18(6), pp. 397-400. DOI: https://doi.org/10.1016/j.rpor.2013.09.011.
 
7. Vakula, A.S., 2015. Temperature dependent microwave properties of Fe3O4 nanoparticles syhthezed by various techniques. Radiophys. electron., 6(20)(3), pp. 62-65 (in Russian). DOI: https://doi.org/10.15407/rej2015.03.062.
 
8. Singh, A.K., Srivastava, O.N., Singh, K., 2017. Shape and Size-Dependent Magnetic Properties of Fe3O4 Nanoparticles Synthesized Using Piperidine. Nanoscale Res. Lett., 12(1), pp. 298-305. DOI: https://doi.org/10.1186/s11671-017-2039-3.
 
9. Poole, C., 1997. Electron Spin Resonance: A comprehensive treatise on experimental techniques. New York: Dover Publ. 810 p.
 
10. Vakula, A., Bereznyak, E., Gladkovskaya, N., Dukhopelnikov, E., Herus, A., Tarapov, S., 2016. Spectral investigation of magnetite nanoparticles interaction with charged drugs. In: 9th Int. Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW 2016). Proc. Kharkiv, Ukraine, 21-24 June 2016. Kharkiv: IEEE. A-30. DOI: https://doi.org/10.1109/MSMW.2016.7538006
 
11. Shabarchina, M.M., Tsapina, A.I., Malenkov, A.G., Vanin, A.F., 1990. The behavior of magnetic metallic iron particles in animals. Biofizica, 35(6), pp. 985-988 (in Russian).
 
12. Yelenich, O.V., Solopan, S.O., Trachevskii, V.V. and Belous, A.G., 2013. Synthesis and Properties of AFe2O4 (A  Mn, Fe, Co, Ni, Zn) Nanoparticles Produced by Deposition from Diethylene Glycol Solution. Russ. J. Inorg. Chem., 58(8), pp. 901-905. DOI: https://doi.org/10.1134/S0036023613080068
 
13. Gubin, S.P., Koksharov, Yu.A., Khomutov, G.B., Yurkov, G.Yu., 2005. Magnetic nanoparticles: production methods, structure and properties. Russ. Chem. Rev., 74(6), pp. 539-574. DOI: https://doi.org/10.1070/RC2005v074n06ABEH000897
 
14. Tarapov, S.I., Machekhin, Yu.P., Zamkovoy, A.S., 2008. Magnetic Resonance for Optoelectronic Materials Investigating. Kharkov: Collegium. 144 p. ISBN 978-966-8604-42-3.
 
15. Chi-Kuen Lo, 2013. Instrumentation for Ferromagnetic Resonance Spectrometer. In: Orhan Yalcin, ed. 2013. Ferromagnetic Resonance - Theory and Applications. Publisher: InTech. Ch. 2, pp. 47-62. DOI: https://doi.org/10.5772/56069
 
16. Morgunov, R.B., Dmitriev, A.I., Dzhardimalieva, G.I., Pomogaĭlo, A.D., Rozenberg, A.S., Tanimoto, Y., Leonowicz, M., Sowka, E., Ferromagnetic resonance of cobalt nanoparticles in a polymer shell. Phys. Solid State, 49(8), pp. 1436-1441 (in Russian). DOI: https://doi.org/10.1134/S1063783407080173
 
17. Krupichka, S., 1976. Physics of ferrites and related magnetic oxides. Translated from German. M: Mir Publ. Vol. 2 (in Russian).
 
18. Durneata, D., Hempelmann, R., Caltun, O. and Dumitru, I., 2014. High-Frequency Specific Absorption Rate of CoxFe1−xFe2O4 Ferrite Nanoparticles for Hipertermia Applications. IEEE Trans. Magn., 50(11), pp. 5201104 (4 p.). DOI: https://doi.org/10.1109/TMAG.2014.2324011