• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

An amplitude and phase detector for dielectric spectroscopy systems

Antonenko, Y, Kozheshkurt, V, Shtoda, D, Katrich, V
Organization: 

 

V.N. Karazin Kharkiv National University
4, Svobody Sq., 61022, Kharkiv, Ukraine

E-mail: antonenko@karazin.ua

https://doi.org/10.15407/rej2020.03.068
Language: ukranian
Abstract: 

 

Subject and Purpose. The objective of the work is to investigate a possibility for the three voltmeter method application to measuring the phase and amplitude difference between two signals in dielectrometry and impedance spectroscopy systems. For the three voltmeter method implementation, two functional schemes – with addition or subtraction of signals – are chosen to consider.

Methods and Methodology. The current state of dielectric spectroscopy as a method enabling measurements of the relative component content in binary solutions and suspensions is surveyed, with emphasis on special merits of this method in the analysis of biochemical properties of liquids. Calculation formulas of the modulus and the real and imaginary parts of the measuring cell impedance are presented for the procedure of measuring cell replacement by an equivalent circuit. The circuit equivalent parameters enable calculating the conductivity and permittivity of the investigated liquid. It is noted that the calculation formulas of the equivalent capacitance and impedance of the measuring cell do not incorporate effect of the adsorption of substance molecules and particles in proximity to the electrode surface, which can be responsible for conductivity and permittivity errors.

Results. A prototype of the amplitude and phase detector has been performed, its technical characteristics tested. Buffer cascades are added at the inputs of the detectors, which provides a –70 dB decoupling level between the measuring and reference channels. A two-stage detection scheme has been used, involving logarithmic and peak detectors. It has been shown that the two-stage detection reduces the ripple level of the measured signal at low frequencies. Good reasons for the signal subtraction scheme in dielectrometry systems have been presented. 

Conclusion. A scheme of a broadband, 1 Hz to 100 MHz, amplitude and phase detector has been proposed for dielectric spectroscopy systems. The phase difference measurement accuracy has been experimentally assessed. A detector calibration method has been suggested, reducing an absolute error of phase difference measurements down to ± 0.1°.

Keywords: amplitude and phase detector, dielectrometry, impedance, impedance spectroscopy, phase difference, three voltmeter method

Manuscript submitted 06.04.2020
Radiofiz. elektron. 2020, 25(3): 68-77
Full text  (PDF)

References: 

 

 

1. Cheng, X., Liu, Y. S., Irimia, D., Demirci, U., Yang, L., Zamir, L., Rodríguez, W.R., Toner, M., & Bashir, R., 2007. Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices. Lab. Chip, 7(6), pp. 746-755. DOI: https://doi.org/10.1039/B705082H
 
2. Bao, X., Ocket, I., Bao, J., Doijen, J., Zheng, J., Kil, D., Liu, Z., Puers, B., Schreurs, D., Nauwelaers, B., 2018. Broadband dielectric spectroscopy of cell cultures. IEEE Trans. Microwave Theory Tech., 66(12), pp. 5750-5759. DOI: https://doi.org/10.1109/TMTT.2018.2873395
 
3. Masot, R., Alcañiz, M., Fuentes, A., Schmidt, F.C., Barat, J.M., Gil, L., Baigts, D., Martínez-Máñez R., & Soto, J., 2010. Design of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopy. Sens. Actuators, A, 158(2), pp. 217-223. DOI: https://doi.org/10.1016/j.sna.2010.01.010
 
4. Yang, S., Hallett, I., Oh, H. E., Woolf, A. B., & Wong, M. (2019). Application of electrical impedance spectroscopy and rheology to monitor changes in olive (Olea europaea L.) pulp during cold-pressed oil extraction. J. Food Eng., 245, pp. 96-103. DOI: https://doi.org/10.1016/j.jfoodeng.2018.10.013
 
5. Kozheshkurt, V., Antonenko, Y., Shtoda, D., Slipchenko, O., & Katrych, V., 2018. Possibilities of Impedance Spectroscopy for the Study of Bioliquids. In: 2018 9th Int. Conf. Ultrawideband and Ultrashort Impulse Signals (UWBUSIS). Odessa, Ukraine, 4-7 Sept. 2018. IEEE. DOI: https://doi.org/10.1109/UWBUSIS.2018.8520236
 
6. Zhu, X., Guo, W. & Liang, Z., 2015. Determination of the fat content in cow's milk based on dielectric properties. Food Bioprocess Technol, 8(7), pp. 1485-1494. DOI: 10.1007/s11947-015-1508-x. DOI: https://doi.org/10.1007/s11947-015-1508-x
 
7. Yoon, Y., Jo, J., Kim, S., Lee, I.G., Cho, B.J., Shin, M. & Hwang, W.S., 2017. Impedance spectroscopy analysis and equivalent circuit modeling of graphene oxide solutions. Nanomater., 7(12), p. 446. DOI: https://doi.org/10.3390/nano7120446
 
8. Jablonskas, D., Ivanov, M., Banys, J., Giffin, G.A., & Passerini, S., 2018. Dielectric spectroscopy of Pyr14TFSI and Pyr12O1TFSI ionic liquids. Electrochim. Acta, 274, pp. 400-405. DOI: https://doi.org/10.1016/j.electacta.2018.04.104
 
9. Steinhauer, M., Risse, S., Wagner, N., & Friedrich, K.A., 2017. Investigation of the solid electrolyte interphase formation at graphite anodes in lithium-ion batteries with electrochemical impedance spectroscopy. Electrochim. Acta, 228, pp. 652-658. DOI: https://doi.org/10.1016/j.electacta.2017.01.128
 
10. Umar, S., Abdelmalik, A.A., & Sadiq, U., 2018. Synthesis and characterization of a potential bio-based dielectric fluid from neem oil seed. Ind. Crops Prod., 115, pp. 117-123. DOI: https://doi.org/10.1016/j.indcrop.2018.02.009
 
11. Färber, R., & Franck, C.M., 2018. Modular high-precision dielectric spectrometer for quantifying the aging dynamics in (Sub-) picofarad polymeric specimens. IEEE Trans. Dielectr. Electr. Insul., 25(3), pp. 1056-1063. DOI: https://doi.org/10.1109/TDEI.2018.006898
 
12. Cornelis, P., Wackers, G., Thomas, I., Brand, M., Putzeys, T., Gennaro, A., Wübbenhorst, M., Ingebrandt, S., & Wagner, P., 2018. A Novel Modular Device for Biological Impedance Measurements: The Differential Impedimetric Sensor Cell (DISC). Phys. Status Solidi A, 215(15), p. 1701029. DOI: https://doi.org/10.1002/pssa.201701029
 
13. Srinivasa, D.M., & Surendra, U., 2019. Comparative study of Breakdown Phenomena and Viscosity in Liquid Dielectrics. In: 2019 Innovations in Power and Advanced Computing Technologies (i-PACT). Materials Sci. Vellore, India, 22-23 March 2019. IEEE. DOI: https://doi.org/10.1109/i-PACT44901.2019.8960134
 
14. Lesaint, O., 2016). Prebreakdown phenomena in liquids: propagation 'modes' and basic physical properties. J. Phys. D: Appl. Phys., 49(14), pp. 144001. DOI: https://doi.org/10.1088/0022-3727/49/14/144001
 
15. Dey, S., & Agarwala, S., 2016. Development of a digital phase angle meter. In: 2016 Int. Conf. Control, Instrumentation, Communication and Computational Technologies (ICCICCT). Kumaracoil, India, 16-17 Dec. 2016 (pp. 549-554). IEEE. DOI: https://doi.org/10.1109/ICCICCT.2016.7988011
 
16. Yang, Z., Chen, Y., Yang, S., Mak, P.I., & Martins, R.P., 2019. A 10.6-mW 26.4-GHz Dual-Loop Type-II Phase-Locked Loop Using Dynamic Frequency Detector and Phase Detector. IEEE Access, 8, pp. 2222-2232. DOI: https://doi.org/10.1109/ACCESS.2019.2962060
 
17. Menachery, A., Burt, J., Chappell, S., Errington, R., Morris, D., Smith, P., Wiltshire, M., Furon, E., Pethig, R., 2016. Dielectrophoretic characterization and separation of metastatic variants of small cell lung cancer cells. [pdf] Tech. Proc. 2008 NSTI Nanotechnology Conf. and Trade Show (NSTI Nanotech). Boston, Massachusetts, USA, 1-5 June 2016. Vol. 3. Nanotechnology 2008: Microsystems, Photonics, Sensors, Fluidics, Modeling, and Simulation. Available at: https://pdfs.semanticscholar.org/2e0d/99017e184c742e09f6c737b84075041060...
 
18. Adams, T.N., Jiang, A.Y., Vyas, P.D., & Flanagan, L.A., 2018. Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis. Methods, 133, pp. 91-103. DOI: https://doi.org/10.1016/j.ymeth.2017.08.016
 
19. Abd Rahman, N., Ibrahim, F., & Yafouz, B., 2017. Dielectrophoresis for biomedical sciences applications: A review. Sensors, 17(3), pp. 449 (27 p.). DOI: https://doi.org/10.3390/s17030449
 
20. Narayanan, L.K., Thompson, T.L., Bhat, A., Starly, B., & Shirwaiker, R.A., 2017. Investigating Dielectric Impedance Spectroscopy As a Non-Destructive Quality Assessment Tool for 3D Cellular Constructs. In: ASME 2017 12th Int. Manufacturing Science and Engineering Conf. collocated with the JSME/ASME. 2017 6th Int. Conf. Materials and Proc. Los Angeles, California, USA, 4-8 June 2017. American Society of Mechanical Engineers Digital Collection. DOI: https://doi.org/10.1115/MSEC2017-2725
 
21. Pasternak, G., Pentoś, K., Łuczycka, D., Kaźmierowska-Niemczuk, M., & Lewandowicz-Uszyńska, A., 2019. Dielectric Properties of Serum in Children with Suspected Immunodeficiency and Suffering from Recurrent Respiratory Infections. Preprints. 2019070155. DOI: https://doi.org/10.20944/preprints201907.0155.v1
 
22. Ochandio Fernández, A., Olguín Pinatti, C.A., Masot Peris, R., & Laguarda-Miró, N., 2019. Freeze-Damage Detection in Lemons Using Electrochemical Impedance Spectroscopy. Sensors, 19(18), p. 4051. DOI: https://doi.org/10.3390/s19184051
 
23. Fischer, G., Handler, M., Johnston, P.R., & Baumgarten, D., 2019. Impedance and conductivity of bovine myocardium during freezing and thawing at slow rates-implications for cardiac cryo-ablation. Med. Eng. Phys., 74, pp. 89-98. DOI: https://doi.org/10.1016/j.medengphy.2019.09.017
 
24. Lasitter, H.A., 1969. Power Line Impedance Determination Using the 3 Voltmeter Measurement Method. IEEE Trans. Electromagn. Compat., 11G , pp. 128-136. DOI: https://doi.org/10.1109/TEMC.1969.4307192
 
25. Marzetta, L.A., 1972. An evaluation of the three-voltmeter method for AC power measurement. IEEE Trans. Instrum. Meas., 21(4), pp. 353-357. DOI: https://doi.org/10.1109/TIM.1972.4314042
 
26. Zekry, A., Ibrahim, A., Atallah, A., Abouelatta, M., & Shaker, A., 2016. Four voltmeter vector impedance meter based on virtual instrumentation. MAPAN, 31(3), pp. 159-167. DOI: https://doi.org/10.1007/s12647-016-0172-6
 
27. Yang, J.R., 2014. Measurement of amplitude and phase differences between two RF signals by using signal power detection. IEEE Microwave Wireless Compon. Lett., 24(3), pp. 206-208. DOI: https://doi.org/10.1109/LMWC.2013.2293665
 
28. Antonenko, E., Mustetsov, N., Shtoda, D., 2014. Method for measuring the complex dielectric constant of biological fluids. In: 5th Int. Radioelectronic Forum "Applied Radioelectronics State and Development Prospects" (MRF-2014). Kharkiv, Ukraine, 14-17 Oct. 2014. Vol. 3, pp. 53-55 (in Russian).
 
29. Bertotti, F.L., Hara, M.S., & Abatti, P.J., 2010. A simple method to measure phase difference between sinusoidal signals. Rev. Sci. Instrum., 81(11), p. 115106. DOI: https://doi.org/10.1063/1.3498897