• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

Eigenwave spectra of a solid-state plasma cylinder in a strong longitudinal magnetic field

Averkov, YO, Prokopenko, YV, Yakovenko, VM
Organization: 

O.Ya. Usikova Institute for Radiophysics and Electronics of NASU
12, Akad. Proskury St., Kharkiv, 61085, Ukraine

V.N. Karazin Kharkiv National University
4, Svobody Sq., Kharkiv, 61022, Ukraine

Kharkiv National University of Radio Electronics
14, Nauky Ave., Kharkiv, 61166, Ukraine

E-mail: yuriyaverkov@gmail.com ; prokopen@ire.kharkov.ua ; yavm@ire.kharkov.ua

https://doi.org/10.15407/rej2021.02.037
Language: ukranian
Abstract: 

Subject and Purpose. Eigenwave studies of various bounded structures make a prolific line of investigation in both modern radiophysics and solid-state and functional electronics. Conducting solids demonstrating plasma (semiconductor) properties attract particular attention. Owing to the high conductivity of semiconductors (as it is inversely proportional to the charge carrier effective mass that is smaller than the free electron mass), interest exists in propagation features of slow elliptical-polarization electromagnetic waves – helicons – in magnetized semiconductor waveguides. The present work aims to determine eigenwave spectra of a solid-state plasma cylinder in a strong constant concentric magnetic field.

Methods and Methodology. The eigenwave theoretical study of a magnetoplasma cylinder in the free space is conducted in terms of Maxwell's equations. The motion equation of conduction electrons of a solid-state plasma is adopted with quasi-stationarity electromagnetic field conditions satisfied. The collision frequency of majority charge carriers is assumed substantially less than their cyclotron frequency.

Results. The dispersion equation of a cylindrical solid-state plasma (semiconductor) waveguide has been obtained. It has been shown that a collisionless magnetoplasma waveguide supports propagation of bulk and surface helicons. The propagation is accompanied by the surface current flowing lengthways cylinder components. Charged particle collisions destroy the surface current and initiate additional (to helicons) H-type hybrid waves such that their phase velocities coincide with phase velocities of the helicons. It has been found that the nonreciprocity effect holds for the waveguide eigenwaves having identical field distribution structures but different azimuthal propagation directions, and it also does as soon as the external magnetic field changes its sense.  

Conclusion. The research results have deepened our understanding of physical properties of bounded structures with plasma-like filling media. More systematization has been added to the knowledge of eigenwave behavior of these structures in a quasi-stationarity electromagnetic field.

Keywords: bulk and surface eigenwaves, eigenmode nonreciprocity effect, helicons, magnetoplasma waveguide, semiconductor waveguide

Manuscript submitted 08.02.2021
Radiofiz. elektron. 2021, 26(2): 37-45
Full text (PDF)

References: 
1. Barannik, A., Cherpak, N., Kirichenko, A., Prokopenko, Yu., Vitusevich, S., Yakovenko, V., 2017. Whispering Gallery Mode Resonators in Microwave Physics and Technologies. Inter. J. Microw. Wireless Technol., 9(4), pp. 781-796. DOI: https://doi.org/10.1017/S1759078716000787
 
2. Kirichenko, A.Ya., Prokopenko, Yu.V., Filippov, Yu.F., and Cherpak, N.T., 2008. Quasi-optical solid-state resonators. Kiev: Naukova dumka Publ. (in Russian).
 
3. Ilchenko, M.E., Vzyatyshev, V.F., Gassanov, L.G., Bezborodov, Yu.M., Berger, M.N., Dobromyslov, V.S., Kapilevich, B.Yu., Narytnik, T.N., Fedorov, V.B., Cherniy, B.S., 1989. Dielectric Resonators. M.E. Ilchenko ed. Moscow: Radio i svyaz' Publ. (in Russian).
 
4. Dormidontov, A.V., Prokopenko, Yu.V., 2013. Influence of the Refractivity and Temperature of the Ambient Medium on the Eigenfrequencies of Quasioptical Cylindrical Dielectric Resonators. Radiophys. Quantum Electron., 56(6), pp. 385-397. DOI: https://doi.org/10.1007/s11141-013-9442-0
 
5. Kirichenko, A.Ya., Lonin, Yu.F., Papkovich, V.G., Ponomarev, A.G., Prokopenko, Yu.V., Uvarov, V.T., Filippov, Yu.F., 2010. Microwave oscillator with a "whispering gallery resonator". Problems of Atomic Science and Technology. Ser. Nuclear Physics Research, 53(2(66)), pp. 135-139 (in Russian).
 
6. Avgustinovich, V.A., Artemenko, S.N., Mashchenko, A.I., Shlapakovskii, A.S., and Yushkov, Yu.G., 2010. Demonstrating gain in a dielectric Cherenkov maser with a rod slow-wave system. Tech. Phys. Lett., 36(3), pp. 244-247. DOI: https://doi.org/10.1134/S1063785010030132
 
7. Dormidontov, A.V., Kirichenko, A.Ya., Lonin, Yu.F., Ponomarev, A.G., Prokopenko, Yu.V., Sotnikov, G.V., Uvarov, V.T., and Filippov, Yu.F., 2012. Auto-Oscillatory System Based on Dielectric Resonator with Whispering-Gallery Modes. Tech. Phys. Lett., 38(1), pp. 85-88. DOI: https://doi.org/10.1134/S106378501201021X
 
8. Averkov, Yu.O., Prokopenko, Yu.V., Yakovenko, V.M., 2019. Eigenwave Spectra of an Anisotropic Cylindrical Solid-State Waveguide. Tech. Phys., 64(1), pp. 1-7. DOI: https://doi.org/10.1134/S1063784219010055
 
9. Averkov, Yu.O., Prokopenko, Yu.V., and Yakovenko, V.M., 2018. Interaction between a tubular beam of charged particles and an anisotropic dispersive solid-state cylinder. Problems of Atomic Science and Technology. Ser. Plasma Electronics and New Methods of Acceleration, 10(4(116)), pp. 3-12.
 
10. Averkov, Yu.O., Prokopenko, Yu.V., and Yakovenko, V.M., 2017. Interaction between a tubular beam of charged particles and a dispersive metamaterial of cylindrical configuration. Phys. Rev. E, 96(1), pp. 013205(12 p.). DOI: https://doi.org/10.1103/PhysRevE.96.013205
 
11. Kaner, E.A., Skobov, V.G., 1967. Electromagnetic waves in metals in a magnetic field. Soviet Physics Uspekhi, 9(4), pp. 480-503. DOI: https://doi.org/10.1070/PU1967v009n04ABEH003005
 
12. Maхfield, B.W., 1969. Helicon Waves in Solids. Amer. J. Phys., 37(3), pp. 241-269. DOI: https://doi.org/10.1119/1.1975500
 
13. Kaner, E.A., 1988. Helicon. Physical encyclopedia. Vol. 1. Moscow: Sov. encycl. Publ.
 
14. Konstantinov, O.V., and Perel', V.I., 1960. Possible Transmission of Electromagnetic Waves through a Metal in a Strong Magnetic Field. Soviet Physics JETP, 11(1), pp. 117-119. URL: http://www.jetp.ac.ru/cgi-bin/dn/e_011_01_0117.pdf.
 
15. Aigrain, P., 1960. Les "Helicons" dans les semiconducteurs. In: Proc. Int. Conf. on Semicond. Phys. Prague, Czechoslovakia, p. 224 (in Czech).
 
16. Bowers, R., Legendy, C., and Rose, F., 1961. Oscillatory Galvanomagnetic Effect in Metallic Sodium. Phys. Rev. Lett. 7(9), pp. 339-341. DOI: https://doi.org/10.1103/PhysRevLett.7.339
 
17. Beletskiy, N.N., Tetervov, A.P., Yakovenko, V.M., 1972. Non-potential surface waves in a semiconductor magnetoactive plasma. Fizika i tekhnika poluprovodnikov, 6(11), pp. 2129-2133 (in Russian).
 
18. Landau, L.D., Lifshitz, E.M., 1984. Electrodynamics of Continuous Media. Oxford: Pergamon Press. DOI: https://doi.org/10.1016/B978-0-08-030275-1.50007-2
 
19. Beletskiy, N.N., Svetlichniy, V.M., Khalameyda, D.D., Yakovenko, V.M., 1991. Electromagnetic phenomena of microwave in inhomogeneous semiconductor structures. Kiev: Naukova dumka Publ. (in Russian).
 
20. Averkov, Yu.O., Prokopenko, Yu.V., Yakovenko, V.M., 2020. Helicons in Solid-State Plasma of Cylindrical Configuration. In: 2020 IEEE Ukrainian Microwave Week (UkrMW 2020). Kharkiv, Ukraine, 21-25 Sept. DOI: https://doi.org/10.1109/UkrMW49653.2020.9252703
 
21. Levich, V.G., 1969. Course of Theoretical Physics. Moscow: Nauka Publ. Vol. 1 (in Russian).
 
22. Kuzelev, M.V., Rukhadze, A.A., and Strelkov, P.S., 2002. Plasma relativistic microwave electronics. Moscow: N.E. Bauman Moscow State Technical University Publ. (in Russian).
 
23. Prokhorov, A.M. ed., 1994. Physical encyclopedia. Moscow: Great Russian Encyclopedia Sci. Publ. (in Russian).