• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

Dispersion properties of artificial topological insulators based on an infinite double-periodic array of elliptical quartz elements

Ivzhenko, LI, Polevoy, SY, Odarenko, EN, Tarapov, SI

O.Ya. Usikov Institute for Radiophysics and Electronics of NAS of Ukraine
12, Acad. Proskury St., Kharkiv, 61085, Ukraine

Kharkiv National University of Radio Electronics
14 Nauky Ave., Kharkiv, 61166, Ukraine  

V.N. Karazin Kharkiv National University
4, Svobody Sq., Kharkiv, 61022, Ukraine 

E-mail: polevoy@ire.kharkov.ua

Language: english

Subject and Purpose. Special features of all-dielectric electromagnetic analogues of topological insulators (TI) in the microwave range are considered, aiming at studying the influence of geometrical and constitutive parameters of TI elements on the dispersion properties of topological insulators based on a two-dimensional double-periodic array of dielectric elements.  

Methods and Methodology. The evaluation of dispersion properties and electromagnetic field spatial distribution patterns for topological insulators is performed using numerical simulation programs.

Results. The electromagnetic analogue of a topological insulator based on a double-periodic array of elliptical quartz cylinders has been considered. By numerical simulation, it has been demonstrated that the electromagnetic properties of the structure are controllable by changing the quartz uniaxial anisotropy direction without any changes in other parameters.

 A combined topological insulator made up of two adjoining ones differing in shapes of their unit cells has been considered with the numerical demonstration that frequencies of surface states are controllable by choosing the quartz uniaxial anisotropy direction. It has been shown that it is at the interface of two different in shape unit cells that the electromagnetic field concentration at a surface state frequency takes place.

Conclusion. A possibility has been demonstrated of controlling microwave electromagnetic properties of topological insulators by changing their geometric parameters and permittivity of the constituents. From a practical point of view, topological insulators can be used as components of microwave transmission lines and devices featuring very small propagation loss.

Keywords: microwave range, photonic crystal, topological insulator, uniaxial anisotropy

Manuscript submitted 17.06.2021
Radiofiz. elektron. 2021, 26(3): 11-17
Full text (PDF)


  1. Thouless, D.J., Kohmoto, M., Nightingale, M.P., Nijs, M. den, 1982. Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Phys. Rev. Lett., 49(6), pp. 405-408. DOI: https://doi.org/10.1103/PhysRevLett.49.405
  2. Haldane, F.D.M., 1988. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly". Phys. Rev. Lett., 61(18), pp. 2015-2018. DOI: https://doi.org/10.1103/PhysRevLett.61.2015
  3. Navabi, A., Liu, Y., Upadhyaya. P., Murata, K., Ebrahimi, F., Yu, G., Ma, Bo, Rao, Y., Yazdani, M., Montazeri, M., Pan, L., Krivorotov, I.N., Barsukov, I., Yang, Q., Amiri, P.K., Tserkovnyak, Ya., and Wang, K.L., 2019. Control of Spin-Wave Damping in YIG Using Spin Currents from Topological Insulators. Phys. Rev. Applied., 11(3), pp. 034046(1-7). DOI: https://doi.org/10.1103/PhysRevApplied.11.034046
  4. Khanikaev, A.B., Shvets, G., 2017. Two-dimensional topological photonics. Nature Photon., 11(12), pp. 763-773. DOI: https://doi.org/10.1038/s41566-017-0048-5
  5. Khanikaev, A., Mousavi, S.H., Tse, W-K., Kargarian, M., MacDonald, A.H., Shvets, G., 2013. Photonic topological insulators. Nature Mater., 12(3), pp. 233-239. DOI: https://doi.org/10.1038/nmat3520
  6. Lu, L., Joannopoulos, J., Soljačić, M., 2014. Topological photonics. Nature Photon., 8(11), pp. 821-829. DOI: https://doi.org/10.1038/nphoton.2014.248
  7. Rechtsman, M., Zeuner, J., Plotnik, Y., Lumer, Ya., Podolsky, D., Dreisow, F., Nolte, S., Segev, M., Szameit, A., 2013. Photonic Floquet topological insulators. Nature, 496(7444), pp. 196-200. DOI: https://doi.org/10.1038/nature12066
  8. Shalaev, M.I., Walasik, W., Tsukernik, A., Xu, Y., Litchinitser, N.M., 2019. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nature Nanotech., 14(1), pp. 31-34. DOI: https://doi.org/10.1038/s41565-018-0297-6
  9. Lai, K., Ma, T., Bo, X., Anlage, S., Shvets, G., 2016. Experimental Realization of a Reflections-Free Compact Delay Line Based on a Photonic Topological Insulator. Sci. Rep., 6, pp. 28453(1-7). DOI: https://doi.org/10.1038/srep28453
  10. He, M., Zhang, L., Wang, H., 2019. Two-dimensional photonic crystal with ring degeneracy and its topological protected edge states. Sci. Rep., 9. pp. 3815(1-6). DOI: https://doi.org/10.1038/s41598-019-40677-5
  11. Huang, H., Huo, S., Chen, J., 2019. Reconfigurable Topological Phases in Two-Dimensional Dielectric Photonic Crystals. Crystals, 9(4), pp. 221(1-9). DOI: https://doi.org/10.3390/cryst9040221
  12. Yang, Y., Xu, Y.F., Xu, T., Wang, H.-X., Jiang, J.-H., Hu, X. and Hang, Z.H., 2018. Visualization of a Unidirectional Electromagnetic Waveguide Using Topological Photonic Crystals Made of Dielectric Materials. Phys. Rev. Lett., 120(21), pp. 217401(1-7). DOI: https://doi.org/10.1103/PhysRevLett.120.217401
  13. Slobozhanyuk, A., Shchelokova, A.V., Ni, X., Hossein Mousavi, S., Smirnova, Daria A., Belov, P.A., Alù, A., Kivshar, Y.S., Khanikaev, A.B. , 2019. Near-field imaging of spin-locked edge states in all-dielectric topological metasurfaces. Appl. Phys. Lett., 114(3), pp. 031103(1-6). DOI: https://doi.org/10.1063/1.5055601
  14. Wang, Z., Chong, Y., Joannopoulos, J., Soljacic, J.M., 2009. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 461(7265), pp. 772-775. DOI: https://doi.org/10.1038/nature08293
  15. Johnson, S.G., Joannopoulos, J.D., 2001. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. Opt. Express, 8(3), pp. 173-190. DOI: https://doi.org/10.1364/OE.8.000173
  16. Blanco, M. de Paz, Vergniory, M.G., Bercioux, D., García-Etxarri A., Bradlyn B., 2019. Engineering fragile topology in photonic crystals: Topological quantum chemistry of light. Phys. Rev. Research, 1(3), 032005(R). DOI: https://doi.org/10.1103/PhysRevResearch.1.032005
  17. Jiang, Z., Gao, Y.-F., He, L., Sun, J.-P., Songa, H., Wang, Q., 2019. Manipulation of pseudo-spin guiding and flat bands for topological edge states. Phys. Chem. Chem. Phys., 21(21), pp. 11367-11375. DOI: https://doi.org/10.1039/C9CP00789J