• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)


Zemlyaniy, OV

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: zolvas@ukr.net

Language: russian

Application of chaotic signals in modern radar and telecommunications is an actual task that can significantly extend the functionality of these systems and improve their performance. In this paper, a method for information transmission using chaotic signal generated by nonlinear dynamical system with delayed feedback of ring type has been suggested. Modulating information sequence controls the parameter of non-linear element, so that it switches the chaotic modes and changes the spectral structure of the signal transmitted to the communication channel. A non-coherent reception was used for demodulation of the received message. The effectiveness of this method of information transmission for the covert operation of communication system in a complex interference environment has been shown.

Keywords: a nonlinear dynamical system with delayed feedback, broadband data transmission system, deterministic chaos

Manuscript submitted 05.06.2015 г.
PACS     05.45.Gg; 05.45.Pq; 05.45.Vx
Radiofiz. elektron. 2015, 20(3): 72-78
Full text  (PDF)

  1. Lukin K. A., 1999. Noise Radar Technology. In: V. M. Yakovenko, ed. 1999. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 4(3), pp. 105–111 (in Russian).
  2. Lukin, K. A., 2005. Noise Radar Technology: The principles and short overview. Appl. Radio Electronics, 4(1), pp. 4–13.
  3. Kislov, V. Ya. and Kislov, V. V., 1997. New class of signals for data transmission. Broadband chaotic signals. Radiotekhnika i elektronika, 42(8), pp. 962-973 (in Russian).
  4. Lukin, K. A., Shcherbakov, V. Ye. and Shcherbakov, D. V., 2013. New method for generation of quasi-orthogonal chaotic sequences. Appl. Radio Electronics, 12(1), pp. 17–24.
  5. Kennedy, M. P., Rovatti, R. and Setti, G., 2000. Chaotic electronics in telecommunications. CRC Press.
  6. Dmitriev, A. S., Panas, A. I. and Starkov, S. O., 1997. Dynamic chaos as a paradigm of modern communication devices. Zarubezhnaya radioelektronika. Uspekhi sovremennoy radioelektroniki, 10, pp. 4–26 (in Russian).
  7. Cuomo, K. and Oppenheim, A., 1993. Circuit Implementation of Synchronized Chaos with Application to Communications. Phys. Rev. Lett. 71(1), pp. 65–68..DOI: https://doi.org/10.1103/PhysRevLett.71.65
  8. Parlitz, U., Chua, L. O., Kocarev, Lj., Halle, K. S., Shang, A., 1992. Transmission of digital signals by chaotic synchronization. Int. J. Bifurcation Chaos, 2(4), pp. 973–977..DOI: https://doi.org/10.1142/S0218127492000562
  9. Belskiy, Yu. L. and Dmitriev, A. S., 1993. Data transmission by means of deterministic chaos. Radiotekhnika i elektronika, 38(7), pp. 1310–1315 (in Russian).
  10. Dedieu, H., Kennedy, M. P. and Hasler, M., 1993. Chaos Shift Keying Modulation and Demodulation of a Chaotic Carrier Using Self-synchronizing Chua’s Circuits. IEEE Trans. Circuits Syst. II Express Briefs. 40(10), pp. 634–642..DOI: https://doi.org/10.1109/82.246164
  11. Dmitriev, A. S., Panas, A. I. and Starkov, S. O., 2002. Dynamic chaos. New data carriers for communication systems. Moscow: Fizmatlit. Publ. (in Russian).
  12. Volkovskiy, A. R. and Rulkov, N. V., 1993. Synchronous chaotic response of a nonlinear data transmission system with a chaotic carrier. Pisʼma Zh. Tekh. Fiz., 19(3), pp. 71–75 (in Russian).
  13. Dmitriev, A. S., Panas, A. I. and Starkov, S. O., 1995. Experiments on speech and music signals transmission using chaos. Int. J. Bifurcation Chaos, 5(4), pp. 1249–1254..DOI: https://doi.org/10.1142/S0218127495000910
  14. Bohme, F., Feldman, U., Schwarz, W. and Bauer, A., 1994. Information transmission by chaotizing. In: Proc. 2nd Int. Workshop on Nonlinear Dynamics of Electronic Systems (NDES'94). Krakov, Poland, 29–30 July 1994. Krakow: Univ. Mining and Metallurgy.
  15. Feldman, U., Hasler, M. and Schwarz, W., 1996. Communication by Chaotic Signals: the Inverse System Approach. Int. J. Circuit Theory Appl., 24(5), pp. 551–579..DOI: https://doi.org/10.1002/(SICI)1097-007X(199609/10)24:5<551::AID-CTA936>3.0.CO;2-H
  16. Ryabov, V. B., Usik, P. V. and Vavriv, D. M., 1997. Chaotic masking without synchronization. Radiofizika and Radioastronomiya, 2(4), pp. 473-479.
  17. Schweizer, J. and Kennedy, M. P., 1995. Predictive Poincare Control: a Control Theory for Chaotic Systems. Phys. Rev. E., 52(5), pp. 4865–4876..DOI: https://doi.org/10.1103/PhysRevE.52.4865
  18. Kozlov, A. K. and Shalfeyev, V. D., 1994. Manipulation of chaotic oscillations in sources with a delayed loop of phase locking. Prikladnaya nelineynaya dinamika, 2, pp. 36–47 (in Russian).
  19. Kolumban, G. and Vizvari, R., 1994. Nonlinear dynamics and chaotic behavior of sampling phase-locked loops. IEEE Trans. Circuits Syst. I Regul. Pap., 41(4), pp. 333–337..DOI: https://doi.org/10.1109/81.285692
  20. Volkovskii, A. R., Young, S. C., Tsimring, L. S. and Rulkov, N. F., 2001. Multi-User Communication using Chaotic Frequency Modulation. In: Proc. Int. Symp. Nonlinear Theory and Its Applications (NOLTA’01). Miyagi, Japan, Oct. 28–Nov. 1, 2001.
  21. Pecora, L. M. and Carroll, T. L., 1990. Synchronization in Chaotic Systems. Phys. Rev. Lett., 64(8), pp. 821–824..DOI: https://doi.org/10.1103/PhysRevLett.64.821
  22. Kennedy, M. P. and Columban, G., 2000. Chaotic Modulation for Robust Digital Communications over Multipath Channels. Int. J. Bifurcation Chaos, 10(4), pp. 695–719..DOI: https://doi.org/10.1142/S0218127400000499
  23. Dmitriev, A. S., Kyarginskiy, B. E., Maksimov, N. A., Panas, A. I., Starkov, S. O., 2000. Potentialities of developing directly chaotic communication systems in radio and microwave ranges. Radiotekhnika, 3, pp. 9–20 (in Russian).
  24. Dmitriev, A. S., Efremova, E. V., Kletsov, A. V., Kuz'min L. V., Laktyushkin, A. M., Yurkin, V. Yu., 2008. Ultrabroadband wireless communication and sensor networks. Radiotekhnika i elektronika, 53(10), pp. 1278–1289 (in Russian).
  25. Dmitriev, A. S., Kyarginskiy, B. Ye., Panas, A. I., Puzikov, D. Yu., Starkov, S. O., 2003. Ultrabroadband directly chaotic data transmission in microwave range. Pisʼma Zh. Tekh. Fiz., 29(2), pp. 70–76 (in Russian).
  26. Dmitriev, A. S. and Kislov, V. Ya., 1989. Stochastic oscillations in radio physics and electronics. Moscow: Nauka Publ. (in Russian).
  27. Ponomarenko, V. I., Karavaev, A. S., Glukhovskaya, Ye. Ye. and Prokhorov, M. D., 2012. Secure communication system with a delay and switchable delay time. Pisʼma Zh. Tekh. Fiz., 38(1), pp. 103–110 (in Russian).
  28. Kalinin, V. I., 2004. Broadband channel with spectral modulation for digital communication. In: 14th Int. Crimean Conf. “Microwave & Telecommunication Technology” (CriMiCo’2004): proc. Sevastopol, Ukraine, 13–17 Sept. 2004, pp. 292–293.
  29. Kalinin, V. I., 2005. Ultrabroadband data transmission with double spectral processing of noise signals. Pisʼma Zh. Tekh. Fiz., 31(21), pp. 58–63 (in Russian).
  30. Kalinin, V. I., 1996. Spectral modulation of broadband noise signals. Radiotekhnika i elektronika, 41(4), pp. 488–493 (in Russian).
  31. Zemlyaniy, O. V. and Lukin, K. A., 2002. Correlation-spectral properties of chaos in the nonlinear dynamical system with delayed feedback and asymmetric nonlinear map. In: V. M. Yakovenko, ed. 2002. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 7(2), pp. 406–414.
  32. Grossmann, S. and Thomae, S., 1977. Invariant Distribution and Stationary Correlation Functions of One-dimensional Discrete Processes. Z. Naturforsch, 32a, pp. 1353–1363..DOI: https://doi.org/10.1515/zna-1977-1204
  33. Sochnev, S. V., 1993. One-dimensional mapping with respect to a given distribution density and autocorrelation function. Izv. Vyssh. Uchebn. Zaved. Prikladnaya nelineynaya dinamika, 1(1–2), pp. 63–71 (in Russian).
  34. Prudnikov, A. I., Brychkov, Yu. A. and Marichev, O. I., 1981. Integrals and series. Moscow: Nauka Publ. (in Russian).
  35. Kalinin, V. I. and Chapurskiy, V. V., 2008. Potential characteristics of wireless digital data transmission by using continuous chaotic signals. In: Proc. 10th Intl. Conf. “Digital signal processing and its application” (DSPA’2008). Moscow, Russia, 26–28 March 2008, pp. 297–301.