• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

DYNAMICS OF TWO-FREQUENCY AVALANCHE-GENERATOR DIODES OF MICROWAVE RANGE

Lukin, KA, Maksymov, PP
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: lukin.konstantin@gmail.com

https://doi.org/10.15407/rej2015.04.054
Language: russian
Abstract: 

The actual task of semiconductor electronics is development and creation of diode generators of microwave power on the basis of active elements with the extended functional possibilities. It is shown that avalanche-generator diodes (AGD) on the basis of abrupt p–n-junctions with constant voltage of the reversed bias are the generators of microwave power. The theoretical analysis of mathematical model of AGD is based on the decision of the complete system of equalizations of diffusive-drifting model describing physical processes in a diode taking into account the influence of charge of mobile carriers on the electric field. A limiting cycle and invariant torus is certain in the phase plane of AGD. It is shown that at high voltage of the reversed bias on abrupt p–n-junctions in AGD there is an internal feed-back between the electric field and avalanche current, resulting in current instability and generation of two-frequency oscillations. The results of theoretical analysis of AGD can be of practical interest to developers of powerful dual-frequency sources of electromagnetic waves of microwave range.

Keywords: attractor, avalanche-generator diode, dual frequency self-exciting oscillation, limit cycle

Manuscript submitted  20.10.2015 г.
PACS     85.30.Mn; 85.30.−z; 85.30.Kk
Radiofiz. elektron. 2015, 20(4): 54-61
Full text  (PDF)

References: 
  1. Tager, А. S. and Vald-Perlov, V. M., 1968. Impact Avalanche and Transit Time Diodes and their Application in Microwave Engineering. Мoscow: Sovetskoe Radio Publ. (in Russian).
  2. Kasatkin, L. V., 2006. Semiconductor devices in millimeter waves. Sebastopol: Weber Publ. (in Russian).
  3. Fedorov, N. D., 1979. Microwave and Quantum Electronics. Мoscow: Atomizdat Publ. (in Russian).
  4. Belyaev, A. E., Basanets, V. V., Boltovets, N. S., Zorenko, A. V., Kapitanchuk, L. M., Klad'ko, V. P., Konakova, R. V., Kolesni, N. V., Korostinskaya, T. V., Kritskaya, T. V., Kudrik, Ya. Ya., Kuchuk, A. V., Milenin, V. V., Ataubaeva, A. B., 2011. Influence of overheating p–n-junctions to the degradation of high-power silicon IMPATT diodes. Fizika i tekhnika poluprovodnikov, 45(2), pp. 256–262 (in Russian).
  5. Carrol, J. E., 1970. Hot Electron Microwave Generators. New York: Elsevier Publ. Co. Inc.
  6. Lukin, K. A., Cerdeira, H. A., Colavita, A. A. and Maksymov P. P., 2003. Internal Amplification of Current Pulses inside a Reverse Biased pn–i–pn-structure. Int. J. Model.Simul., 23(2), pp. 77–84.
  7. Lukin, K. A., Cerdeira, H. A. and Maksymov, P. P., 2003. Self-oscillations in reverse biased p–n-junction with current injection, Appl. Phys. Lett., 83(20):4643–4645.
  8. Lukin, K. A. and Maksymov, P. P., 2008. Self-excited oscillations in abrupt p-n junctions with a reverse bias. In: V. M. Yakovenko, ed. 2008. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 13(2), pp. 232–238 (in Russian).
  9. Lukin, K.A. and Maksymov, P. P., 2012. Power characteristics of millimetric and submillimetric oscillators based on the abrupt p–n-junctions. Radiofizika i elektronika, 3(17)(2), pp. 74-79 (in Russian).
  10. Lukin, K. A., Cerdeira, H. A. and Colavita, A. A., 1997. Chaotic instability of currents in a reverse based multilayered structure. Appl. Phys. Lett., 71(17), pp. 2484–2486.
  11. Lukin, K. A., Cerdeira, H. A. and Colavita, A. A., 1996. Current Oscillations in Avalanche Particle Detectors with pnipn-Structure. IEEE Trans. Electron Devices, 43(3), pp. 473–478.
  12. Maksymov, P. P., 2008. A solution algorithm for the drift-diffusion model equations of semiconducting structures with avalanche p-n junctions. In: V. M. Yakovenko, ed. 2008. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 13(3), pp. 523–528 (in Russian).
  13. Lukin, K. A. and Maksymov, P. P., 1999. A modified counter-sweep method. In: V. M. Yakovenko, ed. 1999. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 4(1), pp. 83–86 (in Russian).
  14. Lukin, K. A. and Maksymov, P. P., 1999. Numerical analysis of semiconducting structures with an abrupt p-n junctions. In: V. M. Yakovenko, ed. 1999. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 4(1), pp. 87–92 (in Russian).
  15. Lukin, K. A. and Maksymov, P. P., 2005. Method calculation of avalanche p-n-junctions in self-excited mode. In: V. M. Yakovenko, ed. 2005. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 10(1), pp. 109–115 (in Russian).
  16. Samarsky, A. A. and Popov, Yu. P., 1980. Finite-Difference Methods in Gas Dynamics. Moscow: Nauka Publ. (in Russian).
  17. Kuznetsov, S. P., 2001. Dynamical Chaos. Moscow: Fizmatlit Publ. (in Russian).
  18. Rabinovich, М. I. and Trubetskov, D. I., 1984. Introduction to the Theory of Oscillations and Waves. Мoscow: Nauka Publ. (in Russian).