• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

METHOD OF MEASURING NON-EQUILIBRIUM CARRIERS CONCENTRATION AND THEIR LIFETIME IN A SEMICONDUCTOR USING THE APPROACH OF A PHOTONIC CRYSTAL WITH A DEFECT MODE

Chernyshov, BV, Golovaschenko, RV, Derkach, VN, Tarapov, SI
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of NAS of Ukraine
12, Acad. Proskury st., Kharkov, 61085, Ukraine
E-mail: boris.chernyshev@gmail.com

https://doi.org/10.15407/rej2017.04.049
Language: English
Abstract: 

The purpose of this paper is an experimental investigation of the influence of properties of the silicon defect layer in a dielectric photonic crystal on the transmission peak spectral properties. The influence of the defect layer thickness on the defect mode frequency is shown. The possibility of changing characteristics of transmission peak by green laser illumination of the silicon layer is demonstrated and analyzed using a photonic crystal approach. It is experimentally found that illumination leads to a decrease of transmission coefficient value at the defect mode frequency, but does not lead to a change of this peak frequency. The non-equilibrium carriers concentration and their lifetime have been evaluated. The results of this paper can be used in manufacturing controllable circuits in millimeter waveband and the approach can be used in semiconductors manufacture as non-destructive control of semiconductors properties method.

Keywords: defect layer, non-equilibrium carriers, photonic crystal, semiconductor

Manuscript submitted 27.09.2017
PACS 41.20.Jb, 71.20.Mq, 72.40. +w​
Radiofiz. elektron. 2017, 22(4): 49-54
Full text (PDF)

References: 
  1. Yablonovitch, E., 1987. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett., 58(20), pp. 2059–2062. DOI: https://doi.org/10.1103/PhysRevLett.58.2059
  2.  Lin, S. Y., 1996. Photonic Band Gap Quantum Well and Quantum Box Structures: A High-Q Resonant Cavity. Appl. Phys. Lett., 68(23), pp. 3233–3235. DOI: https://doi.org/10.1063/1.116558
  3. Chernovtsev, S. V., Belozorov, D. P., Tarapov, S. I., 2007. Magnetically Controllable 1D Magnetophotonic Crystal in MillimeterWavelenght Band. J. Phys. D: Appl. Phys., 40, pp. 295–299. DOI: https://doi.org/10.1088/0022-3727/40/2/001
  4. Bulgakov, A. A., Kononenko, V. K., 2011. Slow waves in a Periodic Structure with a Magnetically Active Semiconductor Layers. Radiofizika i Elektronika, 2(16)(2), pp. 63–70 (in Russian).
  5. Chernyshov, B., Tarapov, S. I., 2016. Manipulation of One-Dimension Photonic Crystal Spectrum via Perforated Silicon Slab. Prog. Electromagn. Res. Lett., 62, pp. 133–139. DOI: https://doi.org/10.2528/PIERL16072206
  6. Yurchenko V., Ciydem M., Gradziel M., Murphy A., Altintas A., 2016. Light-controlled photonics-based mm-wave beam switch. Opt. Express, 24(15), pp. 16471–16478. DOI: https://doi.org/10.1364/OE.24.016471
  7. Tarapov, S. I., Belozorov, D. P., 2012. Microwaves in Dispersive Magnetic Composite Media (Review Article). Low Temp. Phys., 38(7), pp. 766–792. DOI: https://doi.org/10.1063/1.4733684
  8. Averkov, Yu. O., Tarapov, S. I., Kharchenko, A. A., Yakovenko, V. M., 2014. Surface electromagnetic states in the photonic crystal–ferrite–plasma-like medium structure. Low Temp. Phys., 40(7), pp. 667–674. DOI: https://doi.org/10.1063/1.4890364
  9.  Kharchenko, A. A., Tarapov, S. I., 2014. Defect Mode Formation in the Spectrum of a Spatially Bounded Photonic Finite-Size Crystal. Telecommunications and Radio Engineering, 73(6), pp. 547–553. DOI: https://doi.org/10.1615/TelecomRadEng.v73.i6.70
  10. Chernyshov, B., 2015. Influence of Charge Carrier Density in Silicon on Spectrum Band Structure of Photonic Crystal. In: Int. Young Scientists Forum on Applied Physics (YSF). Dnipropetrovsk, Ukraine, 29 Sept. – 2 Oct. DOI: https://doi.org/10.1109/YSF.2015.7333188
  11. Animalu, A., 1977. Intermediate Quantum Theory of Crystalline Solids. New Jersey: Prentice-Hall, Inc., Englewood Cliffs.
  12. Born M., Wolf E., 1964. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Oxford, London, Edinburgh, New York, Paris, Frankfurt: Pergamon Press.
  13. Lyubchanskii, I. L., Dadoenkova, N. N., Lyubchanskii, M. I., Shapovalov, E. A., Zabolotin, A. E., 2006. Response of two-defect magnetic photonic crystals to oblique incidence of light:Effect of defect layer variation. J. Appl.Phys., 100(9), pp. 096110 (3 p.).
  14. Seeger, K., 1973. Semiconductor Physics. Wien, New York: Springer-Verlag. DOI: https://doi.org/10.1007/978-3-7091-4111-3
  15. Bonch-Bruevich, V. L., Kalashnikov, S. G., 1977. Semiconductor Physics. Moscow: Mir Publ., pp. 347–359 (in Russian).
  16. Ryvkin, S. M., 1963. Photoelectric phenomena in semiconductors. Moscow: Fizmatlit Publ. (in Russian).
  17. Baranskiy, P. I., Klochlov, V. P., Potykevich, I. V., 1975. Semiconductor Electronics. Directory. Kyiv: Naukova Dumka Publ. (in Russian).